Selection and Cultural Characteristics of Whole Chicken Feather-Degrading Bacterium, Bacillus sp. SMMJ-2

Whole Chicken Feather-Degrading Keratinolytic Protease 생산균주의 분리 및 특성

  • Published : 2006.03.01

Abstract

Feather, generated in large quantities as a byproduct of commercial poultry processing, is almost pure keratin, which is not easily degradable by common professes. Four strains, SMMJ-2, FL-3, NO-4 and RM-12 were isolated from soil for production of extracellular keratinolytic protease. They were identified as Bacillus sp. based on their morphological and physiological characteristics. They shown high protease activity on 5.0% skim milk agar medium and produced a substrate like mucoid on keratin agar medium. Bacillus sp. SMMJ-2 had a faster production time for producing keratinolytic protease than other strains. This strain did not completely degrade whole chicken feather for five days in basal medium but completely degraded whole chicken feather when supplied with nitrogen source for 40hours in keratinolytic producing medium ($0.7%\;K_{2}HPO_{4},\;0.2%\;KH_{2}PO_{4},\;0.1%$ fructose, 1.2% whole chicken feather, $0.01%\;Na_{2}CO_3$, pH 7.0). When supplied with chicken feather as nitrogen source, keratinolytic protease activity was 89 units/ml/min. When soybean meal was used as nitrogen source, the keratinolytic protease production reached a maximum of 106 units/ml/min after 48 hours under $30^{\circ}C$, 180 agitation. To isolate the keratinolytic protease, the culture filtrate was precipitated with $(NH_4)_{2}SO_4$ and acetone. The recovery rate of keratinolytic protease was about 96% after treatment with 50% acetone. The enzyme was stable in the range of $30{\sim}50^{\circ}C$ and pH $6.0{\sim}12.0$.

가금류의 feather은 전 세계적으로 발생되지 않는 지역이 없을 만큼 광범위하게 발생되어지는 폐기물로써, 현재까지 많은 연구자들에 의하여 그 이용성에 대한 연구가 활발하게 이루지고 있다. 그러나 disulfide 결합, 수소결합 및 이온결합에 의하여 매우 강한 결합력을 가지는 feather 구성 단백질의 화학적인 성질 때문에 분해하여 사용하기에 많은 어려움이 있다. 가금류 폐기물을 이용한 사료의 제조과정에서 가열 및 가압 등의 과정을 거치면서 아미노산의 손실이 발생하고 낮은 소화율 등이 문제로 야기되어지고 있다. 이러한 문제를 해결하기 위한 노력으로 미생물이 생산하는 keratinolytic protease를 이용하고자 산업적으로 이용 가능성을 가지는 균주를 분리하였다. 토양 시료로부터 Bacillus sp. SMMJ-2, FL-3, NO-4 및 RM-12 4종의 keratinolytic protease 생성균을 분리하였다. 이 균주들은 5.0% skim milk agar plate에서 높은 protease 활성을 나타내었으며, 2.0% whole chicken feather agar plate에서도 많은 점질성의 물질을 생산하였다. Keratinolytic protease 생산을 위하여 배지4($0.7%\;K_{2}HPO_{4},\;0.2%\;KH_{2}PO_{4},\;0.1%$ fructose, 1.2% soybean meal, $0.01%\;Na_{2}CO_3$, pH 7.0)에서 Bacillus sp. SMMJ-2에 의한 keratinolytic protease의 생산을 조사한 결과, 배양 3일에 가장 높은 keratinolytic protease 활성을 나타내었다. 그러나, Basal medium(0.05% NaCl, $0.03%\;Na_{2}HPO_{4},\;0.04%\;NaH_{2}PO_{4},\;0.5%$ whole chicken feather, pH 7.0)에 유일한 탄소 및 질소원으로 whole chicken feather를 첨가하고 배양한 결과, $30^{\circ}C$에서 일주일 이상 배양하였을 때 feather은 모두 분해되었으나 깃대는 분리하지 못하였고 배지 4에 질소원으로 1.2% whole chicken feather를 첨가하였을 때 40시간 이내에 깃대를 포함한 feather를 모두 분해하였다. Bacillus sp. SMMJ-2에 의한 keratinolytic protease의 생산은 접종 후 9시간이 지나면서 생산되기 시작하여 24시간 동안 배양하였을 때 최대 활성의 86%를 나타내는 것으로 조사되었다. Bacillus sp. SMMJ-2에 의하여 생산되어지는 keratinolytic protease 활성은 $30^{\circ}C$, 180 rpm으로 3일간 배양했을 때 106 units/ml/min 이였으며, protease 활성은 540 units/ml/min을 나타내었다. 온도와 pH에 대한 효소의 안정성은 $50\%$ acetone을 이용하여 분리한 효소로 조사한 결과, $30{\sim}50^{\circ}C$까지는 80% 이상의 잔존효소활성을 나타내었고, $60^{\circ}C$ 이상에는 20분간 열처리로 효소가 거의 실활 되었다. 효소의 pH 안정성은 pH $6.0{\sim}12.0$에서는 비교적 안정한 것으로 조사되었다.

Keywords

References

  1. Shohei, Y., Y. Morita, Q. Hasan, S. R. Rao, Y. Murakami, Y. Kenji, and T. Eiichi. 2002. Characterization of a new keratindegrading bacterium isolated from deer fur. J. Biosci. Bioeng. 93: 595-600 https://doi.org/10.1016/S1389-1723(02)80243-2
  2. Park, I. W. 1986. Enzyme Nomenclature into Korean. pp. 362. Chongro Pub. Co., Seoul, Korea
  3. Kim, J. H. and Y. D. Ko. 2005. Ejfect of dietary protease (bromelain) treated feather meal on the performance and nutrient utilization in broilers. J. Anim. Sci. Technol. 47: 221-232 https://doi.org/10.5187/JAST.2005.47.2.221
  4. Baker, D. H., R. C. Blitenthal, R. C. Boebel, G. L. Czarnecki, G. K. Southern, and G. M Wilis. 1981. Protein-amino acid evaluation of steam-processed feather meal. Poult. Sci. 60: 1865-1872 https://doi.org/10.3382/ps.0601865
  5. Papadopoulose, M. C., A. R. Eiboushy, and E. H. Ketelaars. 1985. Effect of different processing conditions on amino acid digestibility of feather meal detennined by chick assay. Poult. Sci. 64: 1729-1741 https://doi.org/10.3382/ps.0641729
  6. Dalev, P., J. Ivanov, and A. Liubomirova. 1997. Enzymic modification of feather keratin hydrolysates with lysine aimed at increasing the biological value. J. Sci. Food Agric. 73: 242-244 https://doi.org/10.1002/(SICI)1097-0010(199702)73:2<242::AID-JSFA712>3.0.CO;2-3
  7. Molyneaux, G. S. 1959. The digestion of wool by a keratinolytic Bacillus. Aust. J. BioI. Sci. 12: 274-278
  8. Tideto, T., S. Nakamura, R. Aono, and K. Horikoshi. 1992. Degradation of human hair by a thermostable alkaline protease from alkalophilic Bacillus sp. No. AH 101. Biosci. Biotech. Biochem. 56: 1667-1669 https://doi.org/10.1271/bbb.56.1667
  9. Sangali, S. and A. Brandelli. 2000. Isolation and characterization of a novel feather-degrading bacterial strain. Appl. Biochem. Biotechnol. 87: 17-24 https://doi.org/10.1385/ABAB:87:1:17
  10. Bockle, B., B. Galunski, and R. Muller. 1995. Characterization of a keratinolytic serine protease from Streptomyces pactum DSM40530. Appl. Environ. Microbiol. 61: 3705-3710
  11. Filipello, M. V., A. Fusconi, and S. Rigo. 1994. Keratinolysis and its morphological expression in hair digestion by airborne fungi. Mycopathologia 127: 103-115 https://doi.org/10.1007/BF01103066
  12. Nickerson, W. J., J. J. Noval, and R. S. Robinson. 1963. Keratinase: I. Properties of the enzyme conjugate elaborated by streptomyces fradiae. Biochim. Biophys. Acta 77: 76-86
  13. Xing, L., D. W. Kelemen, E. S. Miller, and C. H. S. Jason. 1995. Nucleotide sequence and expressing of Ker A, the gene encoding a keratinolytic protease of Bacillus licheniformis PWD-1. Appl. Environ. Microbiol. 61: 1469-1474
  14. Yu, R. J., S. R. Harmon, and F. Blank. 1968. Isolation and purification of an extracellullar keratinase of Trichophyton mentagrophytes. J. Bacteriol. 96: 1435-1436
  15. Brysk, M. M. and S. Rajaraman. 1992. Cohesion and desquamation of epidermal stratum corneum. Prog. Histochem. Cytochem. 25: 1-53
  16. Chon, D. H., S. M. Kang, and T. J. Kwon. 2003. Purification and some properties of keratinolytic protease produced by Pseudomonas sp. KP-364. Kor. J. Microbiol. Biotechnol. 31: 224-229
  17. Chon, D. H. and T. J. Kwon. 2001. Isolation of keratinolytic protease producing microorganism and its cultivation condition. Kor. J. Appl. Microbiol. Biotechnol. 29: 134-141
  18. Letourneau, F., V. Soussotte, P. Bressollier, P. Branland, and B. Verneuil. 1998. Keratinolytic activity of Streptomyces sp. S.K1-02: a new isolated strain. Appl. Microbiol. 26: 77-80 https://doi.org/10.1046/j.1472-765X.1998.00281.x
  19. Jang, S. A., M. H. Kim, M. S. Lee, T. K. Oh, and C. B. Sohn. 2000. Purification and characterization of a fibrinolytic enzyme produced by Bacillus sp. S19 from shrimp Jeot-Gal. Kor. J. Appl. Microbiol. Biotechnol. 28: 258-263
  20. Krystyna, W., J. Lobarzewski, and T. Wolski. 1987. Intracellular keratinase of Trichophyton gallinae. J. Med. Veter. Mycol. 25: 261-268 https://doi.org/10.1080/02681218780000601
  21. Kang, H. J., H. J. Lee, T. S. Jung, T. G. Kim, Y. J. Eo, and J. H. Kim. 2003. Isolation and characterization of featherdegrading bacterial strains. Kor. J. Vet. Publ. Hlth. 27: 129-134
  22. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the folin-phenol reagents. J. Biol. Chem. 193: 265-275
  23. Mohamedin, A. H. 1999. Isolation, identification and some cultural conditions of a protease producing thermophilic Streptomyces strain grown on chicken as a substrate. Int. Biodet. Biodeg. 43: 13-21 https://doi.org/10.1016/S0964-8305(98)00061-4