Interaction of Antibiotic with PAN and Cationic-Dyeable PET Fibers in Development of Infection Resistant Biomedical Materials

  • Choi Hyung-Min (Department of Textile Engineering, Soongsil University)
  • Published : 2006.03.01

Abstract

Interaction of a representative antibiotic, doxycycline(Doxy), with commercial poly(acrylonitrile) (PAN) and cationic-dyeable poly(ethylene terephthalate)(PET) fiber was studied in development of infection resistant biomedical materials. Regular PET was also employed for a comparison purpose. Their interactions were investigated at different treatment temperatures, times, and pHs. Fibers were also hydrolyzed by 1% NaOH for 1 or 2 hours at $85^{\circ}C\;and\;100{\circ}C$ to study effect of hydrolysis on antibiotic sorption. Infection-resistant characteristics of the substrates were evaluated by zone of inhibition (ZOI) test. Results revealed that a significant chemical change occurred in PAN and cationic-dyeable PET due to hydrolysis. Additional functional groups obtained by hydrolysis not only enhanced sorption of the antibiotics but also provided greater ZOI values, indicating substantial improvement in sustained infection resistance properties.

Keywords

References

  1. A. Haverich, S. Hirt, M. Karck, F. Sclari, and H. Wahlig, J. Vascular Surg., 15 (1), 187 (1992) https://doi.org/10.1067/mva.1992.30301
  2. H. Choi, M. Bide, M. Phaneuf, W. Quist, and F. LoGerfo, J. Appl. Polym. Sci., 92, 3343 (2004) https://doi.org/10.1002/app.20332
  3. H. Choi, M. Bide, M. Phaneuf, W. Quist, and F. LoGerfo, Text. Res. J., 74(4),333 (2004) https://doi.org/10.1177/004051750407400409
  4. M. Phaneuf, C. K. Ozaki, M. Bide, W. C. Quist, J. M. Alessi, G. A. Tannenbaum, and F. W. LoGerfo, J. Biomed. Mater. Res., 27, 233 (1993) https://doi.org/10.1002/jbm.820270213
  5. M. Bide, T. Zhong, J. Ukponmwan, M. Phaneuf, W. Quist, and F. LoGerfo, AATCC Review, 3(11), 24 (2003)
  6. B. Seifert, G. Mihanetzis, T. Groth, W. Albrecht, K. Richau, Y. Missirlis, D. Paul, and V. Sengbusch, Artif. Organs, 26(2), 189 (2002) https://doi.org/10.1046/j.1525-1594.2002.06876.x
  7. K. Ishikiriyama, A. Sakamoto, M. Todoki, T. Tayama, K. Tananka, and T. Kobayashi, Thermochimica Acta, 267, 169 (1995) https://doi.org/10.1016/0040-6031(95)02476-X
  8. T. T. Evan-Strickfaden, K. H. Oshima, A. K. Highsmith, and E. W. Ades, PDA J. Pharm. Sci. Tech., 50(3), 154 (1996)
  9. T. Groth, B. Seifert, G. Maisch, W. Albrecht, D. Paul, A. Kostadinova, N. Krasteva, and G. Altankov, J. Biomed. Mater. Res., 61(2), 290 (2002) https://doi.org/10.1002/jbm.10191
  10. L. Dabrovska, R. Praus, V. Stoy, and T. Vacik, J. Biomed. Mater. Res., 12(5),591 (1978) https://doi.org/10.1002/jbm.820120503
  11. A. G. Christina, Science, 237, 1588 (1987) https://doi.org/10.1126/science.3629258
  12. J. F. Golan, Infect Dis. Clin. N. Am., 3(2), 247 (1989)
  13. B. Sugarman and E. K. Young, Infect. Dis. Clin. N. Am., 3(2), 187 (1989)
  14. S. M. Burkinshaw in 'Chemistry and Application of Dyes', (D. R. Waring and G. Hallas Eds.), pp.365-375, Plenum Press, New York, 1990
  15. B. R. Rao and K. V. Datye, Text. Chem. Color., 28(10), 17 (1996)
  16. J. S. Glasby, 'Encyclopedia of Antibiotics', 3rd Ed., p.243, John Wiley & Sons, Chichester, 1992
  17. S. Benavides and M. C. Nahata, Ann. of Pharmacother. (USA), 36(2), 334 (2002) https://doi.org/10.1345/aph.1A424
  18. T. P. Banning and C. M. Heard, Int. J. of Pharm., 235, 219 (2002) https://doi.org/10.1016/S0378-5173(01)00988-7