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HYERS-ULAM STABILITY OF A CLOSED
OPERATOR IN A HILBERT SPACE
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ABSTRACT. We give some necessary and sufficient conditions in
order that a closed operator in a Hilbert space into another have
the Hyers-Ulam stability. Moreover, we prove the existence of the
stability constant for a closed operator. We also determine the
stability constant in terms of the lower bound.

1. Introduction

It seems that S. M. Ulam [16, Chapter VI] first raised the stability
problem of functional equations: “For what metric groups G is it true
that an e-automorphism of G is necessarily near to a strict automor-
phism?” An answer has been given in the following way. Let Ej, Es be
two real Banach spaces and f: E; — E» be a mapping such that f(tz)
is continuous in ¢t € R, the set of all real numbers, for each fixed z € F;.
In 1941, D. H. Hyers (3] gave an answer to the problem above as follows.
If there exists an € > 0 such that

Ifz+y) - fla) -yl <e

for all x,y € E7, then there exists a unique linear mapping T: Fy — Es
such that ||f(z) — T(z)|| < € for every £ € E;. This result is called
the Hyers-Ulam stability of the additive Cauchy equation g(z + y) =
g(z) + 9(y)-

In 1978, Th. M. Rassias [9] introduced the new functional inequality
and succeeded to extend the result of Hyers’ by weakening the condition
for the Cauchy difference to be unbounded: If there exist an £ > 0 and
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0 < p < 1 such that
f(z+y)— flz) = FWI <ellzl” + llylP)

for all z,y € E7, then there exists a unique linear mapping T: E; — E»

such that o0
— <

for every z € Fy. Since then several mathematicians were attracted to
this result of Rassias and investigated a number of stability problems
of functional equations. This stability phenomenon that was introduced
and proved by Th. M. Rassias in his 1978 paper is called the Hyers-
Ulam-Rassias stability. In 1991, Z. Gajda [1] solved the problem for
1 < p, which was raised by Th. M. Rassias: In fact, the result of Rassias
is valid for 1 < p; Moreover, Z. Gajda gave an example that a similar
stability result does not hold for p = 1. Another example was given by
Th. M. Rassias and P. Semrl [13, Theorem 2].

The second author, S. Miyajima and S. -E. Takahasi [7] introduced
the notion of the Hyers-Ulam stability of a mapping between two normed
linear spaces as follows:

Il

DEFINITION 1.1. Let (X, ||-||x) and (Y, || ||y) be normed linear spaces
and f be a (not necessarily linear) mapping from X into Y. We say that
f has the Hyers-Ulam stability if there exists a constant K > 0 with the
following property:

For any v € f(X), the range of f, ¢ > 0 and v € X with
[If(u) — v|ly < e, there exists a ugp € X such that f(ug) =v
and |lu —uo|lx < Ke.

We call such K > 0 a HUS constant for f, and denote by K the infimum
of all HUS constants for f. If, in addition, Ky becomes a HUS constant
for f, then we call it the HUS constant for f.

Roughly speaking, if f has the Hyers-Ulam stability, then to each
“e-approximate solution” u of the equation f(z) = v there corresponds
an exact solution ug of the equation in a Ke-neighborhood of .

In {7, 8], the second author, S. Miyajima and S. -E. Takahasi ob-
tained some stability results for particular linear differential operators
D: the n-th order linear differential operator with constant coefficients
and the first order linear differential operator with a continuous func-
tion as coeflicient. In fact, they gave a characterization in order that D
have the Hyers-Ulam stability. Among other things, for the first order
linear differential operator D, the three authors above with H. Takagi
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[8, 15] proved that the infimum Kp becomes the minimum of all HUS
constants: Moreover, they described Kp completely.

H. Takagi, the second author and S. -E. Takahasi [14] considered a
bounded linear operator T' from a Banach space X into another Banach
space Y. To display their result, we need some terminology. Let kerT'
be the kernel of T. Define the induced one-to-one linear operator T from
the quotient Banach space X/kerT into Y by

T(u+kerT) Cru  wueX

Now, their result reads as follows:

THEOREM A ([14, Theorem 2]). Let X and Y be two Banach spaces
and T be a bounded linear operator from X into Y. Then the following
statements are equivalent :

(i) T has the Hyers-Ulam stability.

(ii) T has closed range.
(iii) 7 from T(X) onto X/ker T is bounded.
Moreover, if one of (hence all of ) the conditions (1), (ii), and (iii) is true,
then Kp = |[T-1.

Theorem A states that Kr = |71 is valid whenever T has the
Hyers-Ulam stability. However, the equality only means that the infi-
mum of all HUS constants for T is [|f_1|| In other words, even if we
restrict ourselves to a bounded linear operator T' between two Banach
spaces, we do not know whether the minimum of all HUS constants for
T exists or not. O. Hatori, K. Kobayashi, H. Takagi and S. -E. Taka-
hasi with the second author [2, Example] proved that the infimum of
all HUS constants for a bounded linear operator between two Banach
spaces need not be a HUS constant: That is, the minimum of all HUS
constants does not exist in general.

In this paper, we are concerned with a closed operator T' defined on
a linear subspace D(T') of a Hilbert space G into a Hilbert space H.
We first give some necessary and sufficient conditions in order that T
have the Hyers-Ulam stability: In fact, Theorem A is valid for a closed
operator T' from D(T) C G into H. Moreover, we prove that T has
the Hyers-Ulam stability if and only if T is lower semibounded. Among
other things, we show that the infimum of all HUS constants for T is
also a HUS constant: Namely, the minimum of all HUS constants do
exist. We also describe the HUS constant K4 for T in terms of the
lower bound of T'.
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2. Preliminaries

From now on, by an operator we shall mean a non-zero linear oper-
ator. Let G and H be Hilbert spaces with the norm || - ||¢ and | - ||&,
respectively. An operator 7' with a domain D(T") C G into H is said to be
closed if its graph {(u,Tu) : u € D(T)} is a closed subspace in the prod-
uct Hilbert space G x H. In other words, if u, € D(T) and Tu, € H
converge to ug € G and vy € H, respectively, then uy € D(T) and
vo = T'up holds. We remark that a bounded operator T from D(T') = G
into H is a closed operator.

First, we note the notion of the Hyers-Ulam stability of a closed
operator T. Indeed, the linearity of 7' can make the condition simple.

REMARK 2.1. Let T be a closed operator from D(T) C G into H.
Recall that T is said to have the Hyers-Ulam stability if and only if there
exists a constant K > 0 with the following property:

(a) For any v € T(D(T)), ¢ > 0 and u € D(T) with [|[Tu —v||lg < ¢

there exists a ug € D(T) such that Tup = v and ||u — w|l¢ < Ke.

We excluded the case where K = 0. In fact, if the condition (a) were

true for K = 0, then taking v = 0, we would have Tu = 0 for every

uw € D(T): This contradicts the hypothesis that an operator means non-

zero. Now the linearity of T' implies that the condition (a) is equivalent
to

(b) For any ¢ > 0 and u € D(T) with ||Tu||lg < € there exists a
up € D(T) such that Tug = 0 and |lu — upllc < Ke.

Put ker T & {u € D(T) : Tu = 0}. The condition (b) is equivalent to

(c) For any u € D(T') there exists a ug € ker T' such that
lu = uolle < K||Tulla-

Next, we define a lower semiboundedness of a closed operator.

DEFINITION 2.1. Let T be a closed operator from D(T) C G into H.
We say that T is lower semibounded if there exists a positive constant
~ > 0 such that

(2.1) ITvlla > vlvle Vv € D(T) N (ker T)*.

Here, (ker T')* stands for the orthogonal complement of the kernel ker T
of T: More precisely, (ker T)* is the set of all z € G which are orthogonal
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to every u € ker . We put

(T) ¥ sup{y > 0 |Tv|lz = ¥lvllg, Yo € D(T) N (ker T)*}
(2.2) = inf{||Tv||u/|lvllc : v € D(T) N (ker T)*, v # 0}.
We call 4(T') the lower bound of T.

If T is a closed operator from D(T) C G into H, then it is easy to
see that ker T is a closed subspace of G since T is a closed operator.
In particular, if P is the orthogonal projection from G onto ker T', then
z — Pz € (ker T)* for every z € G.

LEMMA 2.1. Let T be a closed operator from D(T) C G into H. If T
is lower semibounded, then T has the Hyers-Ulam stability with a HUS
constant y(T) L.

Proof. Suppose that T is lower semibounded with the lower bound
¥(T') > 0. By definition, we have

(2.3) ITvller > 4(Dlvlle Yo € D(T) N (ker T)*.

Let P be the orthogonal projection from G onto kerT. Fix u € D(T)

arbitrarily, and put ug 4 pu € ker T Since u — ug € D(T) N (ker T)*,
we have from (2.3) that

lu = wolic < A(T)7HIT(u ~ uo)llgr = +(T) | Tull -

By Remark 2.1, this implies that T has the Hyers-Ulam stability with a
HUS constant (7). O

DEFINITION 2.2. Let T be a closed operator from D(T) C G into H.
We define the induced one-to-one operator T' from D(T) N (ker T)* C G
into H by

Tv® Ty voeDT)N (kerT) .
Since T is closed, so is T.

REMARK 2.2. Suppose that T is a closed operator from D(T) C G
into H. The induced operator T as in Definition 2.2 is corresponding to
T as in (iii) of Theorem A. \

To see this, we remark that the orthogonal complement (ker T)* of
ker T is isometrically isomorphic to the quotient Banach space G/ ker T
with the quotient norm || - ||4: Indeed, z + ker T — Qz (z € G) gives a
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one-to-one onto correspondence between G/ ker T and (ker T)*, where
Q denotes the orthogonal projection from G onto (ker T)*; Since

lz+kerT|, = inf{llz+yllc:y€kerT}
(2.4) = |Qzle Vzeg,

G/kerT is isometrically isomorphic to (ker T')* as a Banach space. If,
in addition, we define an inner product < -,- > on G/kerT by

(2.5) <z+kerT,y+kerT >3 Qr,Qy >¢ Yz,y € G,

then G/ ker T becomes an inner product space. Here, < -, >¢ denotes
the inner product on the Hilbert space G. It follows from (2.4) and (2.5)
that

<z+kerT,z+kerT >=< Qz,Qx >g= ||z + ker T||;>

for every z € G. Consequently, G/ker T is isomorphic to (ker T)* as a
Hilbert space.

LEMMA 2.2. Let T be a closed operator from D(T) C G into H, T
be the induced operator as in Definition 2.2. Each of the following two
statements implies the other:

(i) T~! is bounded.

(ii) T is lower semibounded.
If, in addition, one of the conditions (i) and (ii) is true, then we have
IT=H =~ (T)~"

Proof. Put f—VI~d§f {Tv € H:v e D(T)N (ker T)J'}.~ Note that the
inverse operator T~ ! from H into G is well-defined since T is an injection.

If we assume that 1/0 means oo, then we obtain

Sup{ lolle_. v € D(T) N (ker T)L, v # O}

T _1
[inf{“ﬂ P E’D(T)ﬂ(kerT)J‘,vyéO}] .
lvlle
It follows that 7~ is bounded if and only if T" is lower semibounded. In
this case, the identity above with (2.2) shows that ||T7!|| = v(T)~1. O
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3. Main results

THEOREM 3.1. Let T be a closed operator from D(T) C G into H,
T be the induced operator as in Definition 2.2. The following assertions
are equivalent :
(i) T has the Hyers-Ulam stability.
(ii) T has closed range.
(iii) T~ is bounded.
(iv) T is lower semibounded.

Moreover, if one of the conditions above is true, then Ky = |T7Y| =
YD)~

Proof. We shall prove that (i) < (iv) & (iii) < (ii).

(i) = (iv). Suppose that T has the Hyers-Ulam stability. By (c) of
Remark 2.1, there exists a constant K > 0 with the following property:
For any u € D(T) there exists a uy € ker T such that |lu — ugllg <
K||Tullg. Pick u € D(T) N (ker T)* arbitrarily. By hypothesis, there
exists a ug € ker T such that ||u — uollg < K| Tu|g. Since u € (ker T)+
and since ug € ker T', we get

lulle® < |lulle® + lluollc® = llu — uollc®.
Since u was arbitrary, we thus obtain
(3.6) ITullzr > K~ Yulle  Yu € D(T)N (ker T)* .

This implies that T is lower semibounded.

(iv) = (i) and (iv) < (iii). These are direct consequences of Lemma
2.1 and 2.2, respectively.

Although the equivalence of (iii) and (ii) is well-known, here we give
a proof.

(iii) = (ii). Suppose T~! is bounded. We shall show that if Tu,
(un, € D(T)) converges to an element, say w € H, then w = Tug for
some ug € D(T). Let @Q be the orthogonal projection from G onto
(ker T)*. Since T! is bounded,

(3.7) lolle < 1T |Tvllr Yo e D(T) N (ker T)* .

Note that Qun, € D(T) since D(T) is a linear space, which contains
kerT'. It follows from (3.7) that

1Qun = Qumllc < T I TQ(un — um)lln
= |TNTun = Tumlla,
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and hence {Quy} is a Cauchy sequence of (ker 7). Since (kerT)" is
closed, Qu,, converges to an element, say vy € (ker 7)+. Because T is a
closed operator, we get v € D(T) and w = Tvp.

(ii) = (iii). Suppose that T" has closed range. That is, the range

H={TveH:veDT)N (kerT)*}

of T is a closed subspace of H. Since T-1is a closed operator from the
Hilbert space H into G, it follows from the closed graph theorem that
T~ is bounded.

Now, suppose that one of the conditions (i), (i), (iii) and (iv) is
true. We show that the infimum Kr of all HUS constants for T satisfies
Kr = |IT7Y = v(T)~!: By Lemma 2.2, it is enough to prove that
Ky = fy(T)‘l. To do this, fix a HUS constant Ky for T arbitrarily. A
quite similar argument to (i) = (iv) shows that ||Tu|| g > Ko !||u]|g for
every u € D(T) N (ker T)L. By the definition of the lower bound, we get
(T) > Ko~ !. Since Ky was arbitrary, we obtain v(T)~! < K7. Recall
that v(T)~! is a HUS constant for 7', by Lemma 2.1, and hence K1 <
v(T)~1. We now obtain K7 = v(T)~!, and the proof is complete. [

COROLLARY 3.2. Let T be a closed operator from D(T) C G into H.
If T has the Hyers-Ulam stability, then Kt is the HUS constant for T'.

Proof. By Theorem 3.1, we see that K7 = (T)~!. Since v(T)™! is
a HUS constant for 7', by Lemma 2.1, we conclude that K7 is the HUS
constant for 7. O

The authors believe that Corollary 3.2 is interesting since the infimum
K of all HUS constants for a bounded operator S between two Banach
spaces need not be a HUS constant (cf. {2, Example]): In other words,
although the infimum Kg exists, Kg is not necessarily the minimum.

We recall that every closed operator T from D(T) C G into H can
be regarded as a bounded operator from a Hilbert space into H. In fact,

put Gy def D(T) as a set. We define

def
(3.8) < UV >, =< U0 >¢ + < Tu,To >p Yu,v € Gy,

which becomes an inner product on Gg. Here < -, >g and < -, >p
denote the inner product on G and H, respectively. Since T is a closed
operator, we see that Gy is complete with respect to the induced norm

lullg, < >, for every u € Gy. Hence Gy is a Hilbert space.
We now consider the operator Ty from Gy into H defined by

(3.9) Tou & Tu  vue G,.
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Then Tj is a well-defined bounded operator since
|Toulla® < ulic® + [ Toulla® = llulle,®  Vu € Go

by (3.8) and (3.9).
Next, we are concerned with the Hyers-Ulam stability of Ty. More-
over, we describe the HUS constant Kr,.

THEOREM 3.3. Let T be a closed operator from D(T') C G into H.
Let Ty be a bounded operator from Gy into H defined by (3.9). The

following assertions are equivalent :
(i) T has the Hyers-Ulam stability.
(ii) Ty has the Hyers-Ulam stability.
Moreover, if one of the conditions (i) and (ii) is true, then the HUS

constants Kr, Kg, and the lower bounds v(T'), v(Ty) are connected
with the following relations:

(3.10) Kr=~(T)7}, Kpy =~(To)™'  and

(3.11) K> = Kp? + 1.

Proof. (i) = (ii). Suppose that T has the Hyers-Ulam stability with
a HUS constant K. We prove that for any u € Gy there exists a
ug € ker Ty such that ||u — ugllg, < VK? +1||Tul|g. To do this, pick
u € Gy arbitrarily. Recall that Gy = D(T'), by definition, and that
kerT = kerTy. Since T is assumed to have the Hyers-Ulam stability,
there exists a ug € ker Ty such that ||u — ugll¢ < K ||Tu||g. Adding the
term ||Tu| g® = || Tu — Tuo||z* to the both sides of the last inequality,
we obtain

lu = uolle® + | Tu — Tuollw® < (K* + 1) | Tul|a”.
It follows from (3.8) and (3.9) that ||u — wollg, < VK?Z+1||Toulls,

which implies that Ty has the Hyers-Ulam stability with a HUS constant

VK? + 1. In particular, K1, < vVK?+1, and so Kr, < VE?+1.
(ii) = (i). If Tp has the Hyers-Ulam stability with a HUS constant
Ky, then to each u € Gy there corresponds a ug € ker Ty such that

\/Hu —uollc® + I Toull” = llu — uollg, < Ko || Toull,

which implies that

(3.12) lu—wollc </ Ko® — 1||Tulln-
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Hence T has the Hyers-Ulam stability with a HUS constant v/ Kg? — 1.
We especially obtain K7 < +/ Ko? — 1, and hence K¢ < \/KTO2 - 1.
Suppose one of (hence both of) the conditions (i) and (ii) is true. By

Theorem 3.1 and Corollary 3.2, we see that K7 = y(T)~! and Kp, =
¥(Tp)~! are the HUS constants for T and Ty, respectively. As proved

above, K1, < v/ Kr?+1and Kr < \/KT02 — 1. Consequently,

KT02 < K'T2 +1< (KT02 — 1) +1= KT02,
and hence KT02 = Kp? +1. O

REMARK 3.1. If we apply Theorem 3.1, then we obtain other equiv-
alent conditions in order that Ty have the Hyers—Ulain stability: More
over, K7, can be described by the induced operator Tj.
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