HYERS-ULAM STABILITY OF A CLOSED OPERATOR IN A HILBERT SPACE

GO HIRASAWA AND TAKESHI MIURA

Dedicated to Professor Sin-Ei Takahasi on his 60th birthday (Kanreki)

ABSTRACT. We give some necessary and sufficient conditions in order that a closed operator in a Hilbert space into another have the Hyers-Ulam stability. Moreover, we prove the existence of the stability constant for a closed operator. We also determine the stability constant in terms of the lower bound.

1. Introduction

It seems that S. M. Ulam [16, Chapter VI] first raised the stability problem of functional equations: "For what metric groups G is it true that an ε -automorphism of G is necessarily near to a strict automorphism?" An answer has been given in the following way. Let E_1, E_2 be two real Banach spaces and $f: E_1 \to E_2$ be a mapping such that f(tx) is continuous in $t \in \mathbb{R}$, the set of all real numbers, for each fixed $x \in E_1$. In 1941, D. H. Hyers [3] gave an answer to the problem above as follows. If there exists an $\varepsilon \geq 0$ such that

$$||f(x+y) - f(x) - f(y)|| \le \varepsilon$$

for all $x, y \in E_1$, then there exists a unique linear mapping $T: E_1 \to E_2$ such that $||f(x) - T(x)|| \le \varepsilon$ for every $x \in E_1$. This result is called the *Hyers-Ulam stability* of the additive Cauchy equation g(x + y) = g(x) + g(y).

In 1978, Th. M. Rassias [9] introduced the new functional inequality and succeeded to extend the result of Hyers' by weakening the condition for the Cauchy difference to be unbounded: If there exist an $\varepsilon \geq 0$ and

Received October 1, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 47B33, 34K20.

Key words and phrases: Hyers-Ulam stability, closed operator.

 $0 \le p < 1$ such that

$$||f(x+y) - f(x) - f(y)|| \le \varepsilon (||x||^p + ||y||^p)$$

for all $x, y \in E_1$, then there exists a unique linear mapping $T: E_1 \to E_2$ such that

$$||f(x) - T(x)|| \le \frac{2\theta}{|2 - 2^p|} ||x||^p$$

for every $x \in E_1$. Since then several mathematicians were attracted to this result of Rassias and investigated a number of stability problems of functional equations. This stability phenomenon that was introduced and proved by Th. M. Rassias in his 1978 paper is called the *Hyers-Ulam-Rassias stability*. In 1991, Z. Gajda [1] solved the problem for 1 < p, which was raised by Th. M. Rassias: In fact, the result of Rassias is valid for 1 < p; Moreover, Z. Gajda gave an example that a similar stability result does not hold for p = 1. Another example was given by Th. M. Rassias and P. Šemrl [13, Theorem 2].

The second author, S. Miyajima and S. -E. Takahasi [7] introduced the notion of the Hyers-Ulam stability of a mapping between two normed linear spaces as follows:

DEFINITION 1.1. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be normed linear spaces and f be a (not necessarily linear) mapping from X into Y. We say that f has the Hyers-Ulam stability if there exists a constant $K \geq 0$ with the following property:

For any
$$v \in f(X)$$
, the range of f , $\varepsilon \geq 0$ and $u \in X$ with $||f(u) - v||_Y \leq \varepsilon$, there exists a $u_0 \in X$ such that $f(u_0) = v$ and $||u - u_0||_X \leq K\varepsilon$.

We call such $K \geq 0$ a HUS constant for f, and denote by K_f the infimum of all HUS constants for f. If, in addition, K_f becomes a HUS constant for f, then we call it the HUS constant for f.

Roughly speaking, if f has the Hyers-Ulam stability, then to each " ε -approximate solution" u of the equation f(x) = v there corresponds an exact solution u_0 of the equation in a $K\varepsilon$ -neighborhood of u.

In [7, 8], the second author, S. Miyajima and S. -E. Takahasi obtained some stability results for particular linear differential operators D: the n-th order linear differential operator with constant coefficients and the first order linear differential operator with a continuous function as coefficient. In fact, they gave a characterization in order that D have the Hyers-Ulam stability. Among other things, for the first order linear differential operator D, the three authors above with H. Takagi

[8, 15] proved that the infimum K_D becomes the minimum of all HUS constants: Moreover, they described K_D completely.

H. Takagi, the second author and S. -E. Takahasi [14] considered a bounded linear operator T from a Banach space X into another Banach space Y. To display their result, we need some terminology. Let $\ker T$ be the kernel of T. Define the induced one-to-one linear operator \widehat{T} from the quotient Banach space $X/\ker T$ into Y by

$$\widehat{T}(u + \ker T) \stackrel{\text{def}}{=} Tu \qquad \forall u \in X.$$

Now, their result reads as follows:

THEOREM A ([14, Theorem 2]). Let X and Y be two Banach spaces and T be a bounded linear operator from X into Y. Then the following statements are equivalent:

- (i) T has the Hyers-Ulam stability.
- (ii) T has closed range.
- (iii) \widehat{T}^{-1} from T(X) onto $X/\ker T$ is bounded.

Moreover, if one of (hence all of) the conditions (i), (ii), and (iii) is true, then $K_T = \|\widehat{T}^{-1}\|$.

Theorem A states that $K_T = \|\widehat{T}^{-1}\|$ is valid whenever T has the Hyers-Ulam stability. However, the equality only means that the *infimum* of all HUS constants for T is $\|\widehat{T}^{-1}\|$. In other words, even if we restrict ourselves to a bounded linear operator T between two Banach spaces, we do not know whether the *minimum* of all HUS constants for T exists or not. O. Hatori, K. Kobayashi, H. Takagi and S. -E. Takahasi with the second author [2, Example] proved that the infimum of all HUS constants for a bounded linear operator between two Banach spaces need not be a HUS constant: That is, the minimum of all HUS constants does not exist in general.

In this paper, we are concerned with a closed operator T defined on a linear subspace $\mathcal{D}(T)$ of a Hilbert space G into a Hilbert space H. We first give some necessary and sufficient conditions in order that T have the Hyers-Ulam stability: In fact, Theorem A is valid for a closed operator T from $\mathcal{D}(T) \subset G$ into H. Moreover, we prove that T has the Hyers-Ulam stability if and only if T is lower semibounded. Among other things, we show that the infimum of all HUS constants for T is also a HUS constant: Namely, the minimum of all HUS constants do exist. We also describe the HUS constant K_T for T in terms of the lower bound of T.

2. Preliminaries

From now on, by an operator we shall mean a non-zero linear operator. Let G and H be Hilbert spaces with the norm $\|\cdot\|_G$ and $\|\cdot\|_H$, respectively. An operator T with a domain $\mathcal{D}(T) \subset G$ into H is said to be closed if its graph $\{(u,Tu): u \in \mathcal{D}(T)\}$ is a closed subspace in the product Hilbert space $G \times H$. In other words, if $u_n \in \mathcal{D}(T)$ and $Tu_n \in H$ converge to $u_0 \in G$ and $v_0 \in H$, respectively, then $u_0 \in \mathcal{D}(T)$ and $v_0 = Tu_0$ holds. We remark that a bounded operator T from $\mathcal{D}(T) = G$ into H is a closed operator.

First, we note the notion of the Hyers-Ulam stability of a closed operator T. Indeed, the linearity of T can make the condition simple.

REMARK 2.1. Let T be a closed operator from $\mathcal{D}(T) \subset G$ into H. Recall that T is said to have the Hyers-Ulam stability if and only if there exists a constant K > 0 with the following property:

(a) For any $v \in T(\mathcal{D}(T))$, $\varepsilon \geq 0$ and $u \in \mathcal{D}(T)$ with $||Tu - v||_H \leq \varepsilon$ there exists a $u_0 \in \mathcal{D}(T)$ such that $Tu_0 = v$ and $||u - u_0||_G \leq K\varepsilon$.

We excluded the case where K=0. In fact, if the condition (a) were true for K=0, then taking v=0, we would have Tu=0 for every $u \in \mathcal{D}(T)$: This contradicts the hypothesis that an operator means nonzero. Now the linearity of T implies that the condition (a) is equivalent to

(b) For any $\varepsilon \geq 0$ and $u \in \mathcal{D}(T)$ with $||Tu||_H \leq \varepsilon$ there exists a $u_0 \in \mathcal{D}(T)$ such that $Tu_0 = 0$ and $||u - u_0||_G \leq K\varepsilon$.

Put ker $T \stackrel{\text{def}}{=} \{u \in \mathcal{D}(T) : Tu = 0\}$. The condition (b) is equivalent to

(c) For any $u \in \mathcal{D}(T)$ there exists a $u_0 \in \ker T$ such that $||u - u_0||_G \leq K||Tu||_H$.

Next, we define a lower semiboundedness of a closed operator.

DEFINITION 2.1. Let T be a closed operator from $\mathcal{D}(T) \subset G$ into H. We say that T is lower semibounded if there exists a positive constant $\gamma > 0$ such that

$$(2.1) ||Tv||_H \ge \gamma ||v||_G \forall v \in \mathcal{D}(T) \cap (\ker T)^{\perp}.$$

Here, $(\ker T)^{\perp}$ stands for the orthogonal complement of the kernel $\ker T$ of T: More precisely, $(\ker T)^{\perp}$ is the set of all $x \in G$ which are orthogonal

to every $u \in \ker T$. We put

$$\gamma(T) \stackrel{\text{def}}{=} \sup \{ \gamma > 0 : ||Tv||_H \ge \gamma ||v||_G, \ \forall v \in \mathcal{D}(T) \cap (\ker T)^{\perp} \}$$

$$(2.2) \qquad = \inf \{ ||Tv||_H / ||v||_G : v \in \mathcal{D}(T) \cap (\ker T)^{\perp}, v \ne 0 \}.$$

We call $\gamma(T)$ the lower bound of T.

If T is a closed operator from $\mathcal{D}(T) \subset G$ into H, then it is easy to see that $\ker T$ is a closed subspace of G since T is a closed operator. In particular, if P is the orthogonal projection from G onto $\ker T$, then $x - Px \in (\ker T)^{\perp}$ for every $x \in G$.

LEMMA 2.1. Let T be a closed operator from $\mathcal{D}(T) \subset G$ into H. If T is lower semibounded, then T has the Hyers-Ulam stability with a HUS constant $\gamma(T)^{-1}$.

Proof. Suppose that T is lower semibounded with the lower bound $\gamma(T) > 0$. By definition, we have

$$(2.3) ||Tv||_H \ge \gamma(T)||v||_G \forall v \in \mathcal{D}(T) \cap (\ker T)^{\perp}.$$

Let P be the orthogonal projection from G onto $\ker T$. Fix $u \in \mathcal{D}(T)$ arbitrarily, and put $u_0 \stackrel{\text{def}}{=} Pu \in \ker T$. Since $u - u_0 \in \mathcal{D}(T) \cap (\ker T)^{\perp}$, we have from (2.3) that

$$||u - u_0||_G \le \gamma(T)^{-1} ||T(u - u_0)||_H = \gamma(T)^{-1} ||Tu||_H.$$

By Remark 2.1, this implies that T has the Hyers-Ulam stability with a HUS constant $\gamma(T)^{-1}$.

DEFINITION 2.2. Let T be a closed operator from $\mathcal{D}(T) \subset G$ into H. We define the induced one-to-one operator \widetilde{T} from $\mathcal{D}(T) \cap (\ker T)^{\perp} \subset G$ into H by

$$\widetilde{T}v \stackrel{\text{def}}{=} Tv \qquad \forall v \in \mathcal{D}(T) \cap (\ker T)^{\perp}.$$

Since T is closed, so is \widetilde{T} .

REMARK 2.2. Suppose that T is a closed operator from $\mathcal{D}(T) \subset G$ into H. The induced operator \widetilde{T} as in Definition 2.2 is corresponding to \widehat{T} as in (iii) of Theorem A.

To see this, we remark that the orthogonal complement $(\ker T)^{\perp}$ of $\ker T$ is isometrically isomorphic to the quotient Banach space $G/\ker T$ with the quotient norm $\|\cdot\|_q$: Indeed, $x + \ker T \mapsto Qx$ $(x \in G)$ gives a

one-to-one onto correspondence between $G/\ker T$ and $(\ker T)^{\perp}$, where Q denotes the orthogonal projection from G onto $(\ker T)^{\perp}$; Since

(2.4)
$$||x + \ker T||_{q} = \inf\{||x + y||_{G} : y \in \ker T\}$$
$$= ||Qx||_{G} \quad \forall x \in G,$$

 $G/\ker T$ is isometrically isomorphic to $(\ker T)^{\perp}$ as a Banach space. If, in addition, we define an $inner\ product < \cdot, \cdot > \text{on}\ G/\ker T$ by

$$(2.5) \langle x + \ker T, y + \ker T \rangle \stackrel{\text{def}}{=} \langle Qx, Qy \rangle_G \forall x, y \in G$$

then $G/\ker T$ becomes an inner product space. Here, $\langle \cdot, \cdot \rangle_G$ denotes the inner product on the Hilbert space G. It follows from (2.4) and (2.5) that

$$< x + \ker T, x + \ker T > = < Qx, Qx >_G = ||x + \ker T||_q^2$$

for every $x \in G$. Consequently, $G/\ker T$ is isomorphic to $(\ker T)^{\perp}$ as a Hilbert space.

LEMMA 2.2. Let T be a closed operator from $\mathcal{D}(T) \subset G$ into H, \widetilde{T} be the induced operator as in Definition 2.2. Each of the following two statements implies the other:

- (i) \widetilde{T}^{-1} is bounded.
- (ii) T is lower semibounded.

If, in addition, one of the conditions (i) and (ii) is true, then we have $\|\widetilde{T}^{-1}\| = \gamma(T)^{-1}$.

Proof. Put $\widetilde{H} \stackrel{\text{def}}{=} \{Tv \in H : v \in \mathcal{D}(T) \cap (\ker T)^{\perp}\}$. Note that the inverse operator \widetilde{T}^{-1} from \widetilde{H} into G is well-defined since \widetilde{T} is an injection. If we assume that 1/0 means ∞ , then we obtain

$$\begin{split} \sup_{w \in \widetilde{H} \backslash \{0\}} & \frac{\|\widetilde{T}^{-1}w\|}{\|w\|} \\ &= \sup \left\{ \frac{\|v\|_G}{\|Tv\|_H} : v \in \mathcal{D}(T) \cap (\ker T)^{\perp}, v \neq 0 \right\} \\ &= \left[\inf \left\{ \frac{\|Tv\|_H}{\|v\|_G} : v \in \mathcal{D}(T) \cap (\ker T)^{\perp}, v \neq 0 \right\} \right]^{-1}. \end{split}$$

It follows that \widetilde{T}^{-1} is bounded if and only if T is lower semibounded. In this case, the identity above with (2.2) shows that $\|\widetilde{T}^{-1}\| = \gamma(T)^{-1}$. \square

3. Main results

THEOREM 3.1. Let T be a closed operator from $\mathcal{D}(T) \subset G$ into H, \widetilde{T} be the induced operator as in Definition 2.2. The following assertions are equivalent:

- (i) T has the Hyers-Ulam stability.
- (ii) T has closed range.
- (iii) \widetilde{T}^{-1} is bounded.
- (iv) T is lower semibounded.

Moreover, if one of the conditions above is true, then $K_T = \|\widetilde{T}^{-1}\| = \gamma(T)^{-1}$.

Proof. We shall prove that (i) \Leftrightarrow (iv) \Leftrightarrow (iii) \Leftrightarrow (ii).

(i) \Rightarrow (iv). Suppose that T has the Hyers-Ulam stability. By (c) of Remark 2.1, there exists a constant K > 0 with the following property: For any $u \in \mathcal{D}(T)$ there exists a $u_0 \in \ker T$ such that $\|u - u_0\|_G \le K\|Tu\|_H$. Pick $u \in \mathcal{D}(T) \cap (\ker T)^{\perp}$ arbitrarily. By hypothesis, there exists a $u_0 \in \ker T$ such that $\|u - u_0\|_G \le K\|Tu\|_H$. Since $u \in (\ker T)^{\perp}$ and since $u_0 \in \ker T$, we get

$$||u||_G^2 \le ||u||_G^2 + ||u_0||_G^2 = ||u - u_0||_G^2.$$

Since u was arbitrary, we thus obtain

(3.6)
$$||Tu||_H \ge K^{-1}||u||_G \quad \forall u \in \mathcal{D}(T) \cap (\ker T)^{\perp}.$$

This implies that T is lower semibounded.

(iv) \Rightarrow (i) and (iv) \Leftrightarrow (iii). These are direct consequences of Lemma 2.1 and 2.2, respectively.

Although the equivalence of (iii) and (ii) is well-known, here we give a proof.

(iii) \Rightarrow (ii). Suppose \widetilde{T}^{-1} is bounded. We shall show that if Tu_n $(u_n \in \mathcal{D}(T))$ converges to an element, say $w \in H$, then $w = Tu_0$ for some $u_0 \in \mathcal{D}(T)$. Let Q be the orthogonal projection from G onto $(\ker T)^{\perp}$. Since \widetilde{T}^{-1} is bounded,

$$(3.7) ||v||_G \le ||\widetilde{T}^{-1}|| ||Tv||_H \forall v \in \mathcal{D}(T) \cap (\ker T)^{\perp}.$$

Note that $Qu_n \in \mathcal{D}(T)$ since $\mathcal{D}(T)$ is a linear space, which contains $\ker T$. It follows from (3.7) that

$$||Qu_n - Qu_m||_G \le ||\widetilde{T}^{-1}|| ||TQ(u_n - u_m)||_H$$

= $||\widetilde{T}^{-1}|| ||Tu_n - Tu_m||_H$,

and hence $\{Qu_n\}$ is a Cauchy sequence of $(\ker T)^{\perp}$. Since $(\ker T)^{\perp}$ is closed, Qu_n converges to an element, say $v_0 \in (\ker T)^{\perp}$. Because T is a closed operator, we get $v_0 \in \mathcal{D}(T)$ and $w = Tv_0$.

 $(ii) \Rightarrow (iii)$. Suppose that T has closed range. That is, the range

$$\widetilde{H} = \{ Tv \in H : v \in \mathcal{D}(T) \cap (\ker T)^{\perp} \}$$

of T is a closed subspace of H. Since \widetilde{T}^{-1} is a closed operator from the Hilbert space \widetilde{H} into G, it follows from the closed graph theorem that \widetilde{T}^{-1} is bounded.

Now, suppose that one of the conditions (i), (ii), (iii) and (iv) is true. We show that the infimum K_T of all HUS constants for T satisfies $K_T = \|\widetilde{T}^{-1}\| = \gamma(T)^{-1}$: By Lemma 2.2, it is enough to prove that $K_T = \gamma(T)^{-1}$. To do this, fix a HUS constant K_0 for T arbitrarily. A quite similar argument to (i) \Rightarrow (iv) shows that $\|Tu\|_H \geq K_0^{-1}\|u\|_G$ for every $u \in \mathcal{D}(T) \cap (\ker T)^{\perp}$. By the definition of the lower bound, we get $\gamma(T) \geq K_0^{-1}$. Since K_0 was arbitrary, we obtain $\gamma(T)^{-1} \leq K_T$. Recall that $\gamma(T)^{-1}$ is a HUS constant for T, by Lemma 2.1, and hence $K_T \leq \gamma(T)^{-1}$. We now obtain $K_T = \gamma(T)^{-1}$, and the proof is complete. \square

COROLLARY 3.2. Let T be a closed operator from $\mathcal{D}(T) \subset G$ into H. If T has the Hyers-Ulam stability, then K_T is the HUS constant for T.

Proof. By Theorem 3.1, we see that $K_T = \gamma(T)^{-1}$. Since $\gamma(T)^{-1}$ is a HUS constant for T, by Lemma 2.1, we conclude that K_T is the HUS constant for T.

The authors believe that Corollary 3.2 is interesting since the infimum K_S of all HUS constants for a bounded operator S between two Banach spaces need not be a HUS constant (cf. [2, Example]): In other words, although the infimum K_S exists, K_S is not necessarily the minimum.

We recall that every closed operator T from $\mathcal{D}(T) \subset G$ into H can be regarded as a *bounded* operator from a Hilbert space into H. In fact, put $G_0 \stackrel{\text{def}}{=} \mathcal{D}(T)$ as a set. We define

(3.8)
$$\langle u, v \rangle_{G_0} \stackrel{\text{def}}{=} \langle u, v \rangle_G + \langle Tu, Tv \rangle_H \quad \forall u, v \in G_0,$$

which becomes an inner product on G_0 . Here $\langle \cdot, \cdot \rangle_G$ and $\langle \cdot, \cdot \rangle_H$ denote the inner product on G and H, respectively. Since T is a closed operator, we see that G_0 is complete with respect to the induced norm $\|u\|_{G_0} \stackrel{\text{def}}{=} \sqrt{\langle u, u \rangle_{G_0}}$ for every $u \in G_0$. Hence G_0 is a Hilbert space. We now consider the operator T_0 from G_0 into H defined by

$$(3.9) T_0 u \stackrel{\text{def}}{=} T u \forall u \in G_0.$$

Then T_0 is a well-defined bounded operator since

$$||T_0u||_H^2 \le ||u||_G^2 + ||T_0u||_H^2 = ||u||_{G_0}^2 \quad \forall u \in G_0$$

by (3.8) and (3.9).

Next, we are concerned with the Hyers-Ulam stability of T_0 . Moreover, we describe the HUS constant K_{T_0} .

THEOREM 3.3. Let T be a closed operator from $\mathcal{D}(T) \subset G$ into H. Let T_0 be a bounded operator from G_0 into H defined by (3.9). The following assertions are equivalent:

- (i) T has the Hyers-Ulam stability.
- (ii) T_0 has the Hyers-Ulam stability.

Moreover, if one of the conditions (i) and (ii) is true, then the HUS constants K_T , K_{T_0} and the lower bounds $\gamma(T)$, $\gamma(T_0)$ are connected with the following relations:

(3.10)
$$K_T = \gamma(T)^{-1}, K_{T_0} = \gamma(T_0)^{-1}$$
 and

$$(3.11) K_{T_0}^2 = K_T^2 + 1.$$

Proof. (i) \Rightarrow (ii). Suppose that T has the Hyers-Ulam stability with a HUS constant K. We prove that for any $u \in G_0$ there exists a $u_0 \in \ker T_0$ such that $\|u - u_0\|_{G_0} \leq \sqrt{K^2 + 1} \|Tu\|_H$. To do this, pick $u \in G_0$ arbitrarily. Recall that $G_0 = \mathcal{D}(T)$, by definition, and that $\ker T = \ker T_0$. Since T is assumed to have the Hyers-Ulam stability, there exists a $u_0 \in \ker T_0$ such that $\|u - u_0\|_G \leq K \|Tu\|_H$. Adding the term $\|Tu\|_H^2 = \|Tu - Tu_0\|_H^2$ to the both sides of the last inequality, we obtain

$$||u - u_0||_G^2 + ||Tu - Tu_0||_H^2 \le (K^2 + 1) ||Tu||_H^2$$

It follows from (3.8) and (3.9) that $||u - u_0||_{G_0} \leq \sqrt{K^2 + 1} ||T_0 u||_H$, which implies that T_0 has the Hyers-Ulam stability with a HUS constant $\sqrt{K^2 + 1}$. In particular, $K_{T_0} \leq \sqrt{K^2 + 1}$, and so $K_{T_0} \leq \sqrt{K_T^2 + 1}$.

(ii) \Rightarrow (i). If T_0 has the Hyers-Ulam stability with a HUS constant K_0 , then to each $u \in G_0$ there corresponds a $u_0 \in \ker T_0$ such that

$$\sqrt{\|u - u_0\|_G^2 + \|T_0 u\|_H^2} = \|u - u_0\|_{G_0} \le K_0 \|T_0 u\|_H,$$

which implies that

$$||u - u_0||_G \le \sqrt{K_0^2 - 1} ||Tu||_H.$$

Hence T has the Hyers-Ulam stability with a HUS constant $\sqrt{{K_0}^2 - 1}$. We especially obtain $K_T \leq \sqrt{{K_0}^2 - 1}$, and hence $K_T \leq \sqrt{{K_{T_0}}^2 - 1}$.

Suppose one of (hence both of) the conditions (i) and (ii) is true. By Theorem 3.1 and Corollary 3.2, we see that $K_T = \gamma(T)^{-1}$ and $K_{T_0} = \gamma(T_0)^{-1}$ are the HUS constants for T and T_0 , respectively. As proved above, $K_{T_0} \leq \sqrt{K_T^2 + 1}$ and $K_T \leq \sqrt{K_{T_0}^2 - 1}$. Consequently,

$$K_{T_0}^2 \le K_T^2 + 1 \le (K_{T_0}^2 - 1) + 1 = K_{T_0}^2$$

and hence $K_{T_0}^2 = K_T^2 + 1$.

Remark 3.1. If we apply Theorem 3.1, then we obtain other equivalent conditions in order that T_0 have the Hyers-Ulam stability: More over, K_{T_0} can be described by the induced operator \widetilde{T}_0 .

ACKNOWLEDGEMENT. The second author is partially supported by the Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science.

References

- Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), no. 3, 431-434.
- [2] O. Hatori, K. Kobayashi, T. Miura, H. Takagi, and S.-E. Takahasi, On the best constant of Hyers-Ulam stability, J. Nonlinear Convex Anal. 5 (2004), no. 3, 387–393.
- [3] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
- [4] D. H. Hyers, G. Isac, and Th. M. Rassias, On the asymptoticity aspect of Hyers-Ulam stability of mappings, Proc. Amer. Math. Soc. 126 (1998), no. 2, 425–430.
- [5] D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), no. 2-3, 125-153.
- [6] S.-M. Jung, Hyers-Ulam-Rassias stability of functional equations in mathematical analysis, Hadronic Press, Inc., Florida, 2001.
- [7] T. Miura, S. Miyajima, and S. -E. Takahasi, Hyers-Ulam stability of linear differential operator with constant coefficients, Math. Nachr. 258 (2003), 90–96.
- [8] _____, A characterization of Hyers-Ulam stability of first order linear differential operators, J. Math. Anal. Appl. **286** (2003), no. 1, 136–146.
- [9] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300.
- [10] _____, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), no. 1, 264–284.
- [11] _____, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. **62** (2000), no. 1, 23–130.

- [12] _____, The problem of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. **246** (2000), no. 2, 352–378.
- [13] Th. M. Rassias and P. Semrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), no. 4, 989-993.
- [14] H. Takagi, T. Miura, and S. -E. Takahasi, Essential norms and stability constants of weighted composition operators on C(X), Bull. Korean Math. Soc. **40** (2003), no. 4, 583–591.
- [15] S.-E. Takahasi, H. Takagi, T. Miura, and S. Miyajima, The Hyers-Ulam stability constants of first order linear differential operators, J. Math. Anal. Appl. 296 (2004), no. 2, 403-409.
- [16] S. M. Ulam, A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, no. 8, Interscience Publishers, New York-London, 1960
- [17] K. Yosida, Functional analysis, Springer-Verlag, Berlin-New York, 1978.

GO HIRASAWA, DEPARTMENT OF MATHEMATICS, NIPPON INSTITUTE OF TECHNOLOGY, MIYASHIRO, SAITAMA 345-8501, JAPAN *E-mail*: hirasawa1@muh.biglobe.ne.jp

TAKESHI MIURA, DEPARTMENT OF BASIC TECHNOLOGY, APPLIED MATHEMATICS AND PHYSICS, YAMAGATA UNIVERSITY, YONEZAWA 992-8510, JAPAN *E-mail*: miura@yz.yamagata-u.ac.jp