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A COUNTERPART OF BESSEL’S INEQUALITY
IN INNER PRODUCT SPACES AND
SOME GRUSS TYPE RELATED RESULTS

SEVER S. DRAGOMIR

ABSTRACT. A counterpart of the famous Bessel’s inequality for or-
thornormal families in real or ¢omplex inner product spaces is given.
Applications for some Griiss type inequalities are also provided.

1. Introduction

In [1], the author has proved the following Griiss type inequality in
real or complex inner product spaces.

THEOREM 1. Let (H, (-, -)) be an inner product space over K (K = R,
C) and e € H, |le| = 1. If ¢,®,~,T are real or complex numbers and
x,y are vectors in H such that the conditions

(1.1) Re (Pe —z,2 — ¢e) >0 and Re(l'e —y,y —ve) >0
hold, then we have the inequality

1
(1.2) {,9) = (z,€) (e, 9)| < 7 1@ — [T —].

The constant % is best possible in the sense that it cannot be replaced
by a smaller quantity.

In [2], the following refinement of (1.2) has been pointed out.

THEOREM 2. Let H, K and e be as in Theorem 1. If $,®,,T,z,y
satisfy (1.1) or, equivalently (see [2, Lemma 1))
m_¢+® 7+
2 2

€

(1.3) e

1 1
< =P - < 2T —
<5124l Hy <5I0-1l,
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then

(1.4)
iz, y) — (z,€) (e, y)

< %|<I>—¢| T —~| - [Re(@e—z,x—qﬁe)]é [Re(]f‘e—y,y—ye)]%.

In [3], N. Ujevi¢ has generalised Theorem 1 for the case of real inner
product spaces as follows.

THEOREM 3. Let (H,{(-,-)) be an inner product space over the real
numbers field R, and {e;},c(; _,) an orthornormal family in H, ie.,
we recall that (e;,e;) = 0 ifi # j and |e|| =1, 4,5 € {1,...,n}. If
&7, @i, Ti € R, 4 € {1,...,n} satisfy the condition
(1.5)

<i b, —x,7 — zn:¢i€i> >0, <Zn: Tie; —y,y — i'}’iei> >0,
=1 i=1 =1 =1

then one has the inequality:

n 2

(z,y) - Z (z,e:) (e, y)

i=1

I

(1.6) <

[i (®; - d’i)z ‘ Z (s — %’)2]
i=1

=1

The constant ;11— is best possible in the sense that it cannot be replaced
by a smaller quantity.

We note that the key point in his proof is the following identity:

L7 D (@ e — ) (Bi — (x,e0) — <m =Y e,y Biei - z>
i=1 i=1 i=1
= “IL'”2 - Z <.’L’, ei>2 )
i=1

holding for x € H, ¢,,®; € R, i € {1,...,n} and {ei}ie{l,.__,n} an or-
thornormal family of vectors in the real inner product space H.

In this paper we point out a counterpart of Bessel’s inequality in
both real and complex inner product spaces. This result will then be
employed to provide a refinement of the Griiss type inequality (1.6)
for real or complex inner products. Related results as well as integral
inequalities for general measure spaces are also given.
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2. A counterpart of Bessel’s inequality

Let (H,(-,-)) be an inner product over the real or complex number
field K and {e;},; a countable family of orthornormal vectors in H, i.e.,

0 if i#y
(2.1) (ei, €j> = R 1,7 € I,
1 if i=3j
where I is the set of indices.
It is well known that, the following inequality due to Bessel holds

(22) Sz, edl? < o) for any 2 € H,
i€l
where the meaning of the sum is:

(2.3) Z [(x, e;)|® := sup {Z [z, e)|*, F is a finite part of I} .
icl - Pl Ger ‘
The following lemma holds.

LEMMA 1. Let {e;};c; be a family of orthornormal vectors in H, F
a finite part of I and ¢;,®; (i € F), real or complex numbers. The
following statements are equivalent for x € H

(i) Re <ZieF Die; — T, T~ icp ¢¢€i> >0
(ii) “37 — YieF Qi;ﬁei < % (ZieF |®; — ¢z‘|2)
Proof. 1t is easy to see that for y,a, A € H, the following are equiva-
lent (see [2, Lemma 1])
(a) Re(A—y,y—a) >0 and
(aa) |jy — 454{| < 3 14— all.
Now, for a = >, p ¢;e5, A =3, ie;, we have

N

i
2\ 2
JA—all =Y (@i — ;) el = Z(‘I’i—¢i)€i
el i€l
1 1
2 2\’ 2\’
= (Zlfbi—@-l lesl ) = (Z@i—qﬁil ) :
iEF i€F
giving, for y = z, the desired equivalence. |

The following counterpart of Bessel’s inequality holds.
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THEOREM 4. Let {ei};c;, F, ¢;,®;, @ € F and x € H be so that
either (i) or (ii) of Lemma 1 holds. Then we have the inequality:

(2.4) 0< flall* =D [z )

ieF
Z Z |®; — ¢;|* — Re <Z<I>ze, T, T — Z¢Z€z>
ieF ieF i€F
1
< ZZ@@'—@'F-
ieF

The constant % is best in both inequalities.

Proof. Define
I = ZRe [((I)i —(z,e;)) (m_ E)]

i€l

12 = Re

<Z<I> e Z%ﬂ .

ieF i€eF
Observe that

ZRe[ xez]+ZRe (z,e;)] —ZRe[dnﬁ—Zlmei)!z

el icF ieF el
and
L=Re | ®(z,e)+ Y iz e) =l = D ®id; (es, €j>}
i€F icF icF jEF
_ZRe[ z el)] +ZRe (z,e;) —”.’L‘,|2-ZRG [®
i€F i€F i€F

Consequently, subtracting Iy from I3, we deduce the following equality
that is useful in its turn

(25) Jal® = > lw,e 2 = D Re [(@i — (a,e:)) (T, ) ~ 6]
iEF tEF
e <Z D6, — T, — Z¢iei>} )

i€F ieF

Using the following elementary inequality for complex numbers

Re (ab) §%|a+b|2, a,beK,
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for the choices a = ®; — (z,€;), b = (z,¢;) — ¢; (i € F), we deduce
— — 1
26) Y Re[(@—(z,e) (e —6)| <7210 - il
icF i€F

Making use of (2.5), (2.6) and the assumption (i), we deduce (2.4).
The sharpness of the constant % was proved for a single element e,
llell = 1 in [1], or for the real case in [3].
We can give here a simple proof as follows.
Assume that there is a ¢ > 0 such that

(2.7) 0< > =) |z e
ieF
<c) |® —¢;° ~Re <Z Bie; — ,0 — Z¢iei> ,
s i€F ieF
provided ¢;, ®;,  and F satisfy (i) or (ii).
We choose F = {1}, e1 = € = (%,%) € R% z = (29,m2) €
R%, & =®=m>0, ¢; = ¢ =—m, H=R? to get from (2.7) that

(2.8)

[ )

(.’L‘l + 322)2
2

o (2-2) (o ) (=) (0 )

provided

OSCL'%-F:E%—

(2.9) 0 < (me ~ z,z + me)

(5) e ) (3 (o)

If we choose 1 = %, To = —%, then (2.9) is fulfilled and by (2.8) we

get m? < 4cm?, giving ¢ > %. O

3. A refinement of the Griiss inequality

The following result holds.
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THEOREM 5. Let {e;};.; be a family of orthornormal vectors in H,
F a finite part of I and ¢;,®;, v;,[i €K, ¢ € F and z,y € H. If either

(3.1) Re <Z<I>,~ei —x,x—2¢iei> >0,

ieF ieF
Re <Zrzel - Y%Y—- Z’Yzel> P Oa
i€F ieF

or, equivalently,

1

®; + ¢, 1 :

(32) \m—z%ei s§<\;|¢>i~¢i|2> :
ieF icF

1

T+ 1 :

ly—z——z ‘e Sg(Zlﬂ-%F) :
i€l iEF

hold, then we have the inequalities

(33) <$7y) - Z <l‘, ei> <eia y>
i€EF
< i (Zlcm - ¢1~|2> : (Z IL; —vi|2>
icF i€l
— {Re <Z Pe; —x,x — Z¢z€1>jl 2
i€F i€l
- | Re <Z Lie; —y,y — Z'Yiei>:| 2
ieF i€F
< % <Z|‘I)z - ¢i|2> : (Z T —’Yi|2) .
iEF iEFR

The constant % is best possible.
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Proof. Using Schwartz’s inequality in the inner product space (H,
(+,-)) one has

2
(3.4) <m - Z (z,e;) e,y — Z (y,€s) ei>
icF i€F
2 2
< e = (meded| [lv=> wee
ieF icF

and since a simple calculation shows that

<$ = zede,y— Y (ve) ei> =(z,y) = Y_ (z, ) (ei,y)

ieF ieF ieF
and

2
2= (mede| =lz1* = Uz e
eF ieF
for any z,y € H, then by (3.4) and by the counterpart of Bessel’s in-
equality in Theorem 4, we have

2
(3.5) (@,y) = > (z,e) (€i,v)
ieF
< (nxw -3 1<m,ez->|2) (Hyu2 -3 |<y,ei>12>
ieF i€F
< E > 1% — ¢if° —Re <Z Dies — 3,7 — Z¢iei>]
ieEF ieF iEF
X [% > I —vl* —Re <Z Fiei—y,y — Z%ei>]
i€F ieF i€F
< }1 (Z |®; — ¢i|2) : (Z T — %‘|2)
i€l i€F
— {Re <Z b,e; —x,x — Z¢iei>j| 2
el iceF

[re(Sre-so- S| T

i€F ieF
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where, for the last inequality, we have made use of the inequality

(m? —n?) (p® - ¢*) < (mp — ng)?,

where m,n,p,q > 0.

Taking the square root in (3.5) and observing that the quantity in
the last square bracket is nonnegative (see for example (2.4)), we deduce
the desired result (3.3).

The best constant has been proved in [1] for one element and we omit
the details. g

4. Some companion inequalities

The following companion of the Griiss inequality also holds.

THEOREM 6. Let {e;},.; be a family of orthornormal vectors in H,
F a finite part of I and ¢;,®; € K, i € F and z,y € H such that

Tty =+
(4.1) Re <Z e — — y,_29_ —Z¢iei> >0

el icF

or, equivalently,

(4.2) m+y—zqi;—fﬁ-ez

2

< % (Z|@i—¢il2)2,

ieF

i€F
then we have the inequality
1
(4.3) Re [(fﬂ,y) =) (z,e) (ei,y>] <1 P L AL
E€F i€F
The constant 5 is best possible.

Proof. Start with the well known inequality

(4.4) Re (z,1) < % lz+ul®, zucH.
Since
<$,y> - Z <,’L’,€7;> <eiay> = <l‘ - Z <.’L’,€i> €,y — Z <y,€i> 6i> 3
i€l ieF ieF
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for any z,y € H, then, by (4.4), we get

(@,9) =Y (z,e) (e, y)}

ieF

Re Kfﬂ - Z (z,€i) i,y — Z (y, €:) 6¢>]

i€F ier

m~2(m,ei)ei+y—2(y,ei)ei

ieF . ieF

2
T+y Tr+y
! —2<—2 >

2 P

2
r+y H _ Z
2 icF
If we apply the counterpart of Bessel's inequality in Theorem 4 for w_*z'u,
we may state that
z+y 1 2
Y| (Fe)| < T im el
icF iEF

Now, by making use of (4.5) and (4.6), we deduce (4.3).

The fact that % is the best constant in (4.3) follows by the fact that
if in (4.1) we choose z = y, then it becomes (i) of Lemma 1, implying
(2.4), for which, we have shown that 1 was the best constant. O

Re

(4.5)

2
1

4

74N

2

2 2

T+y

(4.6) ;

The following corollary may be of interest if we wish to evaluate the
absolute value of

Re

(a:,y) - Z <$, 6¢> <6i»y>] .

iEF
COROLLARY 1. With the assumptions of Theorem 6 and if

+y %
(4.7) Re <Z<I>iei— z : Y. : Y —Z¢iei> >0

ieF ieF

or, equivalently

-

(4.8)

zx ®, + ¢,
y_ZzT‘ﬁz.ei <

2

(Zi@i —¢il2>§,

i€l

DO | =

ieF
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then we have the inequality

<x,y> - Z <.’L‘,6, €Y :l

iEF

(4.9) Re

1

Z Z l(I) ¢’L
€F

Proof. We only remark that, if

Re<2®iei—x , Z¢ez>>0

ieF ieF

holds, then by Theorem 6 for (—y) instead of y, we have

—(z,y) + ) _ (z,e:) (ei,y>] < EZ |®: — ¢,

ieF ieF

showing that

(410)  Rel{z,y) =D _(ze) <ei,y>] > -1 I -
ieF zEF
Making use of (4.3) and (4.10), we deduce the desired inequality (4.9).

O

REMARK 1. If H is a real inner product space and m;, M; € R with
the property that

rty xx
(4.11) <2Mie,~ - v __2_1/ _ Zmiei> >0

or, equivalently,

(4.12)

zEy M; +m;
D) _Z 5 ©

i€F
then we have the Griiss type inequality

(4.13) (@,y) = > (x,e) ()] <

ieF

5. Integral inequalities

Let (©,%, 1) be a measure space consisting of a set 2, a o—algebra
of parts ¥ and a countably additive and positive measure p on ¥ with
values in RU{oo}. Let p > 0 be a u—measurable function on Q. Denote
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by L?, (2,K) the Hilbert space of all real or complex valued functions
defined on 2 and 2 — p—integrable on €, i.e.,

(5.1) /Q o ()1 () du (5) < oo.

Consider the family {f;};c; of functions in L2 (€2, K) with the prop-
erties that

52) Lo 5@T @ du( =65, igel
where d;; is 0 if i # j and &;; = 1 if i = j. {fs},c; is an orthornormal
family in Lf, (Q,K).

The following proposition holds.

PROPOSITION 1. Let {f;},.; be an orthornormal family of functions
in Lf, (Q2,K), F afinite subset of I, ¢;,®; e K (i € F) and f € LIQ, (2, K),

so that either
(5.3)

/Qp(S)Re

or, equivalently,

(Z ®ifi(s) = f (S)) (7 (5) =D & ﬁ(S))} dp(s) 20

ieF ieF

64) [ p@)|76) =Y F 525 ()| d §Z<I> 8.
Q ieF cF
Then we have the inequality
5 o 2
(55 0< /Q PO)1F 0P du(e) =3 /Q 0(5) £ ()T () du ()
< Y16
el

—/p(S) Re (Z ®;fi (s) *f(s))
Q2 i€F

: (7@)—2@%(8))]@(8)
ieF
1

i€F

The constant % is best possible in both inequalities.
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The proof follows by Theorem 4 applied for the Hilbert space L%(Q
K) and the orthornormal family {f;},;.

The following Griiss type inequality also holds.

PROPOSITION 2. Let {f;};c; and F' be as in Proposition 1. If ¢;, ®;
%, Ti €K (i € F) and f,g € L% (Q,K) so that either

(5.6)

/ [(Z‘I’ﬁ )(ﬂs)—;@ﬁ(s))}du(s)zo,

i€EF

[oone|(rnr-o) (s~ S7o) oz

or, equivalently,

2
F6) = T E g o) () < 3 1% 6,

i€l ieEF

(5.7) /Q o(s)

/Q o (s)

then we have the inequalities

2
9() - F 1 (5)| duls) < 3 3 I — il

ieF el

CONNY RISHEROIA®
-3 [p@ 1@ T [ r6) au (5)

i€EF

< 3(ze @) (s )é

(o] (o)

iEF

(oo Jue

N =
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X {/ﬂp(s)Re (iEZFFz’fi (s) —9(5)>
: (a(s) - Z“T[ﬁ(éﬂ) }du (s)}
ieF

< 3 (Z @ - mz)% (Z s - %|2>

ieF ieF

N

N

The constant % is the best possible.
The proof follows by Theorem 5 and we omit the details.

REMARK 2. Similar results may be stated if we apply the inequalities
in Section 4. We omit the details.

In the case of real spaces, the following corollaries provide much sim-
pler sufficient conditions for the counterpart of Bessel’s inequality (5.5)
or for the Griiss type inequality (5.8) to hold.

COROLLARY 2. Let {f;},c; be an orthornormal family of functions
in the real Hilbert space L2(Q,R), F' a finite part of I, M;,m; € R
(i € F) and f € L2 (,R) so that

(5.9) Zmifi ()< f(s) < ZMifi (s) for p—a.e seq.
i€F EF

Then we have the inequalities

(5.10)
2
OS/QP(S)F(S)dN(S)—iGZF[/QP(S)J”(S)fi(S)du(S)]
< i Z (M; —m;)?
=
- / p(s) (Z Mifi(s)— f (3)) (f ()= > _mif; (3)> du (s)
Q icF icF
< EZ(Mi—mi)z-

i€F

The constant % is best possible.
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COROLLARY 3. Let {f;},.; and F be as in Corollary 2. If M;, m;, N,
n; €R (i € F) and f,g € L% (9, R) such that

(5.11) Y mifi(s) < f(s) <Y Mifi(s)
el el

and

Znifi (s)<g(s) < ZNifi (s) for p—ae s€

ieF ieF

Then we have the inequalities
612 |[ s ©e61dne
-3 [ @56 £ [ o690 i) o)

ieF
< % (Z (M; —- mz)2> <Z (N; — fn,)2>
ieF ieFr
Lo (g -0
el

- (f (5) = S mafi (5) ) du <s>}
iEF

Lipofgmore)

iEF

: (g (5) = S nifs (s>> du <s>}
el

< i(z <Mi—mi>2) (Z <Ni—ni)2)

el el

NI=
=
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