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EIGENVALUES OF A RANDOM
WALK ON ORIENTED MATROIDS

SEUNG-HO AHN AND SHIN-OK BANG

ABSTRACT. We generalize the results about eigenvalues of random
walks on central hyperplane arrangements computed by Bidigare,
Hanlon and Rockmore to the cases of random walks on oriented
matroids.

1. Introduction

An affine hyperplane in V = R" is an (n — 1) dimensional affine
subspace of R". A finite set A of affine hyperplane in R" is called
an affine hyperplane arrangement. Then A cuts V into regions called
chambers. We denote by F the collection of all faces of the chambers.
The arrangement A is called central if

() H+#e.

HeA
Let C be the set of all chambers of an arrangement A. For F € F
and C € C, the product F'C is defined to be the nearest chamber to C
having F as a face. Here “nearest” is defined in terms of the number of
hyperplanes in A separating C from FC. Let w be a probability measure
on F. Then a step in the walk is given by “From C € C, choose F from
the measure w and move to FFC”. One can also describe the walk on C
by giving its transition matrix K:

(1.1) K(C,C')= > w(F), for each C,C’ .

FC=C’
Let S be the set of all nonempty affine subspaces W C V of the form
W = Nyen H, where A C A. S is called the intersection lattice.
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Bidigare, Hanlon and Rockmore [1] proved the following theorem.
Moreover, K. S. Brown and P. Diaconis [3] generalized it to non-central
cases.

THEOREM 1.1. [1] Let A be a central hyperplane arrangement in V,
let F be the set of faces, let S be the intersection poset and let w be
a probability measure on F. Then the matrix K is diagonalizable. For
each W € S, there is an eigenvalue

Aw = Z w(F)
&
with multiplicity m,, = | u(W,V) | = (-1)°dmWV) (W, V), where
p is the Mébius function of S and codim(W, V') is the codimension of W
in V. See [4] for the definition of Mébius function.

The following construction follows [1]. For any finite set S, let RS de-

note the vector space of all real linear combinations Z a(S)S(a(S) € R)

Ses
of elements of S. In particular, we have vector spaces RC and RF gen-

erated by the chambers and faces of a hyperplane arrangement.
Then RF is an R-algebra and RC is an RF-module via the action of
faces on chambers. Given a probability measure w of F, we have an
element v

T=T,=)» w(F)F

Fer

of RF, which therefore acts as an operator on RC. Explicitly, given an
element a = Z a(C)C € RC,

cecC
T(e)= Y. w(F)a(C)FC=>Y" pCC,
FeF, CeC C'eC
where 8(C") = Y w(F) a(C)=>_ a(C) K(C,C").
F%:C’ cec

b

Here
K(C,C)= Y w(F).
FCc=C’
Thus, if elements of RC are row vectors indexed by C, T acts as right
multiplication by the matrix K. In particular, the eigenvectors of T on
RC are the left eigenvectors of K.
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For a hyperplane H in V, H* and H~ denote the open half-spaces
determined by H. The choice of which one to call H* is arbitrary. Then
a face is a nonempty set F' C V of the form

F=(\H{,
el
where o; € {+,—,0} and H? = H;.
The sequence o = (0;);c; which encodes the definition of F is called
the sign sequence of F' and is denoted by o(F'). In particular, the faces

such that o; # 0 for all ¢ are called chambers. For a face F', the support
of F' is defined to be the affine subspace

supp F' = ﬂ H;.
0;(F)=0
In fact, the face F' with a given support W form the chambers of the
hyperplane arrangement A, in W consisting of the intersections H;NW
for those 7 such that o;(F) # 0. The arrangement A, is called the
restriction of A to W.
The face poset of A is the set F of faces, ordered as follows: Given
F .G € F, we say that I is a face of G and we will denote by F' < G if
for each ¢ € I either o;(F) = 0 or 0;(F) = 0;(G). Given F,G € F, their
product F'G is the face with sign sequence

_ ) ai(F) if oy(F) #0,
oi(FG) = {Ji(G) if 0;(F) = 0.

Now let S be the set of all supports of elements of F and let S, = {W €
S | codim(W,V) = p}. Also let Cy = {F € F|supp F = W} and let
Fp = {F € F| codim(supp F,V) = p}. Then

RF, = €D RCw.

WeS,

In [3], the RF-module homomorphism
Op : RF, — RFp_1

was defined by using an orientation of V' and it was proved that J, is a
boundary map and the sequence

(1.2) 0. —RF, 2 ... 2RE 2L RC 2R — 0

is an exact chain complex. Also, the operator T is a chain homomor-
phism between the chain complexes (1.2)’s. By using the result that the
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sequence (1.2) is exact, Bidigare, Hanlon and Rockmore proved Theorem
1.1 by computing eigenvalues of T : RC — RC (See [1], [3]).

In this paper, we prove that an oriented matroid is a generalization
of a central hyperplane arrangement. And we generalize the boundary
map O, to the oriented matroids and we prove that generalized one of
the sequence (1.2) is also exact. From this we have a generalization of
Theorem 1.1 as follows, because the remaining proof of this generalized
theorem is the same as the proof of Theorem 1.1.

THEOREM 1.2. Let V be an oriented matroid. And let w be a prob-
ability measure on the set of faces F associated to an oriented matroid
V. Let S be the set of all supports. Then the matrix K defined in (1.1)
is diagonalizable. For each W € S, there is an eigenvalue

Aw = E w(F)
FeF
FCW

with multiplicity m,, = | wW(W, V)| = (=1)°dmWV) (W, V).

2. Generalization

We first prove that the oriented matroid is a generalization of the
face poset of central hyperplane arrangement. Let E denote the finite
set {1,2,3,...,n}. Then V C {-,0,+}¥ is the set of vectors of an
oriented matroid if V satisfies the following axioms:

(Vo) 0 V.

(Vi) If X € V, then —X € V.

(Vo) If X,Y € V, then X oY € V, where the coordinates of X oY are
those of X replaced the zero coordinate of it by the corresponding
coordinates of Y.

(V3) Given X,Y € V, let S(X,Y) = {i | z; = —y; # 0}. For every
J€S(X,Y), thereisa Z € Vwith Z; =0and Z; = (X oY); =
(YoX), forig¢ S(X,Y).

In this case we call X € V a vectors of an oriented matroid V.

PRrOPOSITION 2.1. Let A be a central hyperplane arrangement and
let F be the face poset. Also let V = {0 = (04(F))ict | F € F} be
the set of all sign sequences of the elements of 7. Then V is the set of
vectors of an oriented matroid .

Proof. 1t is clear that (Vp) and (V;) are true. Let o(F) = (0;(F))ser
and o(G) = (0i(G))icr be elements in V. Since o(FG) = o(F) o o(G),
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a(F)oo(G) € V. Thus (V) holds. Let o(F),0(G) € V and let
S(o(F),0(G)) = {i | 0:(F) = —as(G) # 0}. For j € S(o(F),0(G)),
we can find a face K € F satisfying the following conditions:

(1) 0,(K) = 0.

(2) For i ¢ S(o(F),0(G)) if 0;(F) = 0;(G) = 0, then 0;(K) = 0,
otherwise 0 # 0;(K) = 0;(F) or 0;(G).

Then o(K) satisfies the condition (V3). O

Proposition 2.1 shows that the oriented matroids are generalization
of the face poset of central hyperplane arrangements.

From now on, we show that some lemmas for the proof Theorem 1.2.

The oriented matroids arising from hyperplane arrangements are said
to be realizable. A chamber of an oriented matroid V is an element Y € V
with no zero coordinates. Note that if Y is a chamber of V and X € V
then X oY is a chamber. Thus if w(-) is a probability distribution on
V, we may define a Markov chain K(X,Y’) on the chambers of V via

(2.1) KX, Y)= > w(Z).

ZoX=Y
Let F be the set whose elements F (called faces) are in one-to-one corre-
spondence with the sign sequences in V. We denote the correspondence
by F + o(F) = (0;(F));c1, where I is a finite index set. Then the set F
of faces of an oriented matroid is a poset under the face relation defined
before.

Each face F' has a support, determined by the zero set Z(F) = {i €
I} 0;(F)=0}. The set S of all supports is a lattice in a natural way,
which we call the intersection lattice. For any W € S, we write Z(W) for
the zero set of any face F’ with support W. We denote by V the largest
element of §. This is the support of any maximal element C € F. These
maximal elements of F are called chambers, and the set of all of them is
denoted by C. For any W € S, the set F' € F with support W is again
the set of chambers of an oriented matroid V,,, said to be obtained by
restriction to W. Its face poset is F, = {F € F | supp F < W}. The
rank of an oriented matroid is the length of the interval [0,V] in S.
The length of the interval [W, V] is the codimension of W; it is equal to
rank V —rank V.

We wish to define the notion of orientation for an element W € S. It
suffices to consider W = V| since this then applies to arbitrary W by the
restriction operation described above. By an orientation for V we will
mean a rule that associates to each maximal chain 0 = Ag < --- < 4,
in F a sign € = £1 in such a way that adjacent maximal chains get
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opposite signs. Here two maximal chains are adjacent if they differ in
exactly one position. We will also say in this situation that one maximal
chain is obtained from the other by an elementary move.

Give an orientation for each W € 8. That is, attach a sign e = +1
to any chain in F of the form

0=Ag< A1 <--- < A,

in such a way that sign changes if an elementary move is performed.
Given A < B in F, take a chain

0=A4p<---< A, = A
Define
[AB]Z +1 lfs(A()?;AT):s(AO’aATaB)a
-1 if (Ao, - ,A;) = —¢(4o, -+, Ar, B).

Then it is easy to see that [A : B is independent of the choice of the
chain from 0 to A. Also we have the following diamond condition.

LEMMA 2.2. Let C be a chamber in an oriented matroid V and By, Bs
be faces of C' with supp By = supp Bs and let A be a face of By and By
with codimension 2. Then [A : B;|[B; : C] = —[A: By|[B; : C].

Proof. 1t is sufficient to show that the result is true for the following
four cases:

(l) [B1 : C] = +1, [A : Bl] = 1.
(ii) [B1:C)=+1, [A: Bi]=-1.
(i) [B1:C]=-1, [A:B]=+1.
(iv) [B1:Cl=-1, [A: Bj]=-1.
Case (i) Let [By : C] = +1. Then for a chain Ag < A; < < A, = A
€(A07 t aAT7B1) = €(A(), T 7A7‘7Bla C)’
E(A()a T aA'r'; Bl) = _6(A0> T 7AT,B2)a
6(A0a" t 7A’;‘a Bl) C) = —‘8(140, Tt 7A'I‘a BZ) C) 4
Thus ¢(Ag, -, Ar, B2) = €(Ag,- -+, Ar, B2,C). Hence [By : C] = +1.
Also, since [A : By] = +1,
<‘:—‘(1407 cee ,AT) - S(AOa et )A’I‘) Bl) - _E(AOa et 7A'I‘a BZ)
Thus [A : Bg] = —1. Therefore we have the equality
[A: Bi]|[B1:C]=—[A: By][B: C].
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Case (ii) If [B; : C] = +1, then [Bs : C] = +1 by case (i). Since
[A: Bi] = -1, [A: Bg] = +1. Therefore we have the equality in this
case. The proofs of the cases (iii) and (iv) are entirely analogous. |

Let 0 : F — V be an order preserving isomorphism. For F' € F and
CeC,let o(F)=z,0(C) =y. If we define FC € C by o~ !(zy), then
RC can be an RF-module. We have the linear map Jp : RC — R given
by 0p(C) = 1for all C € C. For each F € F, F acts as the identity on R.
Thus 0y is an RF-module homomorphism and ker d; is an RF-module.

Let 71 C F be the set of codimension 1 face, that is,

F1={F | codim F =1}.
Define 0; : RF; — ker 0y by the following. For each A € F; and for
two chambers C' and C’ having A as a face,
0(A)=[A:C)C+[A:CC.

Define an action of F on RF; as follows. Given F € F and A € Fi,
F x A € Fy is defined by the following. Similarly to the realizable case,
if supp F' C H = supp A, then FA € F;. Thus, in this case Fx A = FA.
If supp F' ¢ supp A, then FA is a chamber and we set F x A = 0.

LEMMA 2.3. Let F € F and A € F;. Also, let C and C' be chambers
having A as a face. Then

(1) If supp F € supp A, then FA= FC = F(C'.

(2) If supp F C supp A, FC and FC' are two chambers having FA
as a face.

Proof. (1) If i € suppF = {i | 0;(F) # 0} and ¢ ¢ supp 4, then
0i(FA) = 04y(F) = 0i(FC) = 0;(FC'). If 05(F) = 0 and o;(4) # 0,
then

03(FA) = 03(A) = 75(C) = 0;(FC) = o;(FC").
Thus (1) is proved.

(2) Let supp F' C supp A. If 0;(F) = 0 and ¢;(A) # 0,

0;j(FA) =0j(A) = 0;(C) = 0j;(FC) = 0;(FC").

Thus for each j € supp 4, 0;(FA) = 0;(FC) = 0;(FC"). If i ¢ supp 4,
0i(FC) = 04(C) and 0;(FC") = 0;(C"). Therefore FA is a face of both
FC and FC'. O

LEMMA 2.4. For each F € F and for each A € Fy, 01(F x A) =
F - 9,(A). That is, 81 is a chain homomorphism.
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Proof. Let C and C’ be the chambers having A as a face. Let
suppF ¢ suppA. By Lemma 2.3 (1), FA = FC = FC'. In this
case,

FOLA=F(A:CIC+[A:CC")=[A:C|FC +[A: C"\FC'
=+FC F FC'=0.
Also F+* A=0and so 6,(F x A) =0.
If supp F' C supp 4,
O (F*A)=0,(FA) (Lemma 2.3 (2))
= [FA: FO|FC + [FA: FC'|FC’
and Fo0,(A)=F([A:C]C+[A:CC)
=[A:CJFC+[A:C'|FC'.
Since supp FA = supp 4, [FA : FC| = +0;(FC) = +0;(C) = [A : C]
and [FA : FC'| = 20,(FC’) = 20;(C’") = [A : C'] by Lemma 2 in (3],
01(F x A) = Fo,(A). O
Let Sp = {W € S : codim (W, V) = p} and let Cyy be the set of faces

with support W. Let F, = {F | codim (F,V) = p}. For each F € F
and A € F, set

i C
Fade FA, 1fF_‘suppA
0, otherwise.

This makes RF, an RF-module. Let
RF, = P RCw.
WeS,
Define
Op : RFp, — RFp1
by 0p(A) = Y 55 4[A; B]B. Then by Lemma 2.2, 8,18, = 0.

LEMMA 2.5. For each F € F and A € F,,0,(F x A) = FO,(A).

Proof. Let B be the face of codimension p — 1 with A < B. Let
W = supp B. Then A is a codimension 1 face of the oriented matroid
V- Thus we have the result by Lemma 2.4. O

THEOREM 2.6. The sequence

(2.2) o — P Rew — P RCy — RC — R — 0
Wwes: HeSy
is an exact chain complex of RF-modules.
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Proof. By Lemma 2.5, 8, is an RF-module homomorphism. Also,
by Lemma 2.2, (2.2) is a chain complex. Also the opposite poset F°P
is isomorphic to a cell complex A, which is topologically n-ball ([2],
corollary 4.3.4), where 0 corresponds to the n-cell. Thus the sequence
(2.2) is an exact chain complex. O
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