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EXISTENCE AND EXPONENTIAL STABILITY
OF ALMOST PERIODIC SOLUTIONS FOR
CELLULAR NEURAL NETWORKS WITH
CONTINUOUSLY DISTRIBUTED DELAYS

BingweEN Liu AND LiHONG HUANG

ABSTRACT. In this paper cellular neural networks with continu-
ously distributed delays are considered. Sufficient conditions for the
existence and exponential stability of the almost periodic solutions
are established by using fixed point theorem, Lyapunov functional
method and differential inequality technique. The results of this
paper are new and they complement previously known results.

1. Introduction

Consider the following models for cellular neural networks(CNNs)
with continuously distributed delays

Z(t) = — cslait) + 3 ay (0)(;(0)

(1.1) . ; =t

+305(0) [ Kig(wf(eit = w)duc+ o),
=1 0

in which n corresponds to the number of units in a neural network, z;(t)
corresponds to the state vector of the ith unit at the time ¢, ¢;(t) > 0
represents the rate with which the ith unit will reset its potential to
the resting state in isolation when disconnected from the network and
external inputs at the time ¢. a;;(t), b;;(t) are the connection weights
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at the time ¢, and I;(t) denote the external inputs at time t. f; (j =

1,2,...,n) are signal transmission functions.
Throughout this paper, it will be assumed that ¢;, I;,a;5,b;; : R — R
are almost periodic functions, where 7, j = 1,2,...,n. We suppose that

i, 35, by and T, are constants such that

0< ¢ = inf ei(2), sup as; (£)] = @,

(1.2) _ _
sup |bi;(t)| = bij, sup|Li(t)| =L,
teR teR

where i, =1, 2,...,n.
We also assume that the following conditions (Tp), (T1) and (7%) hold.
(To) For j € {1, 2,...,n}, fj : R — R are Lipschitz continuous
with Lipschitz constants L;, that is,

| £5(uz) = fi(v;)| < Ljlus — v|,¥ uj, v; € R.

(T1) Fori,je {1, 2,...,n}, the delay kernels Kj; : [0,00) — R are
continuous, integrable and satisfy

| 1Ki)ds < ks
0

(I3) Fori,j e {1, 2,...,n}, there exists a constant Ay > 0 such
that

oo
/ |Kij(s)|e*%ds < 4o0.
0
The initial conditions associated with system (1.1) are of the form
(1.3) zi(s) = pi(s),s € (—o0, 0], i =1,2,...,n,

where ¢ = (Wl(t)HPZ(t), .- ,Spn(t))T> %(t) :R—R, i=1 2,...,n,
are almost periodic functions.

DEFINITION 1.1. (see (7, 11]) Let u(t) : R — R™ be continuous
in ¢. u(t) is said to be almost periodic on R if, for any ¢ > 0, the set
T(u,e) = {6 : |[u(t+6) — u(t)| < &, Vt € R} is relatively dense, i.e., for
Ve > 0, it is possible to find a real number ! = [(¢) > 0, for any interval
with length [(g), there exists a number § = §(¢) in this interval such
that |u(t + 0) — u(t)| < e, for Vt € R.

DEFINITION 1.2. Let Z*(t) = (z}(¢), z3(t), ...,z (t))T be an almost
periodic solution of system (1.1) with initial value ¢* = (p}(t), p4(t), .- -,
@5 (t))7. If there exist constants A > 0 and M, > 1 such that for every
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solution Z(t) = (x1(t), z2(t), . .., zx(t))T of system (1.1) with any initial
value p= (‘Pl(t)’ 902(t)’ v >‘Pn(t))T7
lwi(t) — 2f(6)] < Myllp — @*lle™,Vt >0, i=1,2,...,n,

where ¢;(t), i (t) : R — R, i =1, 2,...,n, are almost periodic func-

tions, |l — ¢*|| = sup Jfoax |<p,( )— ©i(s)]. Then Z*(t) is said to
—00<sL0

be global exponential stable.

It is well known that the delayed cellular neural networks (DCNNs)
have been successfully applied to signal and image processing, pattern
recognition and optimization. Hence, they have been the object of inten-
sive analysis by numerous authors in recent years. In particular, there
have been extensive results on the problem of the existence and stability
of periodic solutions of system (1.1) in the literature. We refer the reader
to [2, 3, 6, 8, 9, 12, 16] and the references cited therein. However, there
exist few results on the existence and exponential stability of the almost
periodic solutions of system (1.1). We only find that Liu [15] and Chen
[4] studied the existence and exponential stability of the almost periodic
solutions of CNNs with continuously distributed delays. In [15], we also
find that the conditions (73) is a sufficient condition for the functions
Gi(p) and F;(p) of (4.2) to be continuous functions. Therefore, we can
introduce the main results of [15] and [4] as follows.

THEOREM A. Suppose that (Tp) and (T1) hold, K;;(s) > 0 for all
s € [0,00), M[c;] > 0, and there exist constants Ao > 0 and r < 1 such
that

o0 n
(1-4) /0 Kij( Aosds < 400, 7= lrgaél { Zéz_ aij + szsz)L }

where i,j = 1,2,...,n, M[¢g;] = hm Tft+T s)ds. Then system

(1.1) has exactly one almost per1od1c solut1on. Moreover, the almost
periodic solution is globally exponentially stable.

The main purpose of this paper is to give the conditions for the ex-
istence and exponentially stability of the almost periodic solutions for
system (1.1). By applying fixed point theorem and differential inequality
technique, we derive some new sufficient conditions ensuring the exis-
tence, uniqueness and exponential stability of the almost periodic solu-
tion, which impose a less restrictive constraint than those in [15] and [4],
and improve and extend some previous result. Moreover, an example is
also provided to illustrate the effectiveness of the new results.
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For convenience, we introduce some notations. We will use z =
(z1, x9,...,2,)T € R™ to denote a column vector, in which the symbol
(T) denotes the transpose of a vector. For matrix D = (dij)nxn, DT
denotes the transpose of D, and E, denotes the identity matrix of size
n. A matrix or vector D > 0 means that all entries of D are greater
than or equal to zero. D > 0 can be defined similarly. For matrices or
vectors D and E, D > F (resp. D > FE) means that D — E > 0 (resp.
D-FE>0).

The following lemmas and definitions will be useful to prove our main
results in Section 2.

DEFINITION 1.3. (see [7, 11]) Let € R™ and Q(t) be an n x n
continuous matrix defined on R. The linear system

(1.5) '(t) = Q(t)=(t)
is said to admit an exponential dichotomy on R if there exist positive
constants k, a, projection P and the fundamental solution matrix X (t)
of (1.5) satisfying

X&) PZ(s)| < ke=®t=5) fort > s,

X (t)(I — P)X~(s)|| < ke~*(5=D  for t < s.

LEMMA 1.1. (see [7, 11]) If the linear system (1.5) admits an expo-

nential dichotomy, then almost periodic system

(1.6) '(t) = Q) + g(t)
has a unique almost periodic solution z(t), and
+o00

(1.7)
z(t) = /_ X(t)PZ71(s)g(s)ds — t X(t)(I — P)X(s)g(s)ds.

LEMMA 1.2. (see [7, 11]) Let c;(t) be an almost periodic function on
R and

1 t+T
M[cilzTEToof/t ci(s)ds >0, i=1,2,...,n.
Then the linear system

z'(t) = diag(—c1(t), —c2(t), - . ., —en(t))z(2)
admits an exponential dichotomy on R.

DEFINITION 1.4. (see [1, 14]) A real n x n matrix W = (ws;)nxn
is said to be an M-matrix if w;; <0, 4,7 =1, 2,...,n, ¢ # j, and
W~1 > 0. where W~ denotes the inverse of W.
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LEMMA 1.3. (see [1, 14]) Let W = (w;j)nxn With wi; < 0, 4,5 =
1, 2,...,n, ¢ # j. Then the following statements are equivalent.

(1) W is an M-matrix.

(2) There exists a vector n = (1,72, ...,Mm) > (0,0,...,0) such that
nW > 0.

(3) There exists a vector £ = (£,&3,...,&)T > (0,0,...,0)T such
that W¢ > 0.

LEMMA 1.4. (see [1, 14]) Let A > 0 be an n X n matrix and p(A) < 1.
Then (E, — A)™! > 0, where p(A) denotes the spectral radius of A.

2. Existence of almost periodic solutions

THEOREM 2.1. Suppose that (Tp) and (T1) hold, and p(D~*EL) < 1,
where

D = diag(c1, G2, -..,6n), A= (Ti)nxn,
B = (bijkij)nxn, L = diag(L1, La,...,Ly),
I=(N, L..., I,), E=(a;+bijkij)nxn = A+ B.
Then, there exists at least one almost periodic solution of system (1.1).
Proof. Let

X = {gl¢ = ($1(t), ¢2(t),...,¢n(®)7},
where ¢; : R — R is an almost periodic function, 7 =1,2,...,n. Then,

X is a Banach space with the norm defined by ||¢||x = sup max |¢;(t)].
'R 1<i<n

To proceed further, we need to introduce an auxiliary equation

zi(t) = — ci(t)zalt) + Y aii (1) £5(85(2))

j=1

£ () / " K ) f5(65(t — w))du + Ii(0),
=1 0

J

(2.1)

where i = 1, 2,...,n, &(t) = ($1(t), ¢2(t),...,¢n(t))T € X. Notice
that M¢;] > 0, i = 1, 2,...,n, it follows from Lemma 1.2 that the
linear system

(2.2) T'(t) = —ci(t)z(t),i =1, 2,...,n,
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admits an exponential dichotomy on R. Thus, by Lemma, 1.1, we obtain
that the system (2.1) has exactly one almost periodic solution:

20(t) = (20(8), 23(t), ..., 25()T
- ( [ e RS 95064

—00 =1

(2.3) * ]Z; b1; (s / K1j(u) fi(¢;(s — u))du

t
-|-I1(S)]d8,..., / (4 f Cn(u)duzan] f] ¢J( ))

— j=1

+ ]zz; bnj(s) . /O Km(u)fj(qﬁj(s — u))du + In(S’)]d8> )

Define a mapping ¢ : X — X by setting
o(¢(t)) = 2°(t), Vo € X.
Let ¢,% € X. Then, by (Tp) and (T7), we have

|2((2)) — 2(())]
= (1(2(¢(®)) = @Ml -, [(B((t) — H(E)))nl)”

_ (‘ / e—fim(wdu(za1j<s><fj<¢j(s>> — f5(®5(5)))

b

+ Zblj 3)/ Kij(u) - (fi(9;(s —u)) — fi(¥;(s — u)))du)ds

e f cn(u)du Zan] f](¢](3)) fJ ij( )))

—00 -

T
ds)

# 3ot [ Kns 00505 = 0) = £ — u)du)
j=1

t : n
S(/_oo e~ A0S agzLy|g5(s) — 5(5)|

J=1
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Ebu/ |K1;(u)|Lj|¢j(s — u) — ¥j(s — u)|du)ds

t n
“,/ e—Cnlt— 5)(ZamL i (s) Z
—o0 j=1

T

7j=1

/le Ljli(s — u) ¢J(s—u)|du)>

<( [ et (Samtsupiont) - o)

ij=1

Zbly | K@iz sup o0 = vy lduds.

ce /t e Cnlt= s)(ZamL sup|¢J Zb_
00 T =
[ IRz sup 1640 _¢j(t)|du)ds)
0 teR

n
< < > e @z + brjkay) Ly sup | (t) — w;(t)],
T

o YT @ k)L - sup (0 - (0 )
o teR
which implies that
(2.4)
T
(Sup [(@(&(t)) — (W )als- - -, sup [(2(e(2)) — ‘I’(w(t)))no

teR teR

n
< ( G + Bk )Ly sup16,(8) = U5 )
— (S
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where F' = D™'EL. Let m be a positive integer. Then, from (2.4), we
get

(2.5)
T
(flelg [(@™(g(t)) — " (P(O)l,-- -, sup [(@™(8(2)) — ‘I>m(¢(t)))n|>

- (335 (@@ (6E) ~ @ G- sup (2@ (6(1)
T
- <I>(<I>"“1(w(t))))nl>
< F(sup (@™ ((t)) — 3™ (e,
teR

T
. sup | (@™ (6(1)) — @m—lw(t)))nl)

teR

T
< Fm(sup|<¢<t> —gOhl,...,sup (60 —¢<t>>n|)

teR teR

T
- Fm(sup 61(8) = $2(0), .., sup | (t) - wn(t)l) .
teER teR

Since p(F') < 1, we obtain

lim F™ =0,

m-—4oQ

which implies that there exist a positive integer N and a positive con-
stant r < 1 such that
n
(2.6) FN =(D'EL)N = (hij)nxn, and » hy<ri=1,2,...,n.
=1

In view of (2.5) and (2.6), we have

(@Y (p(2)) — DN (()))s] < sup [(@N ((1)) — @V (¥(2)) )il

teR

< ]; hij sup |65(t) — ¥;(2)]



Existence and exponential stability of almost periodic solutions 453

< (sup max |¢;(t) Zh

1<j<n
teR SIS j=1

<rlle(t) —v(®)lx,
forallt€ R, i=1, 2,...,n. It follows that

|2 (6(0) - $" (G (D)]1x = sup max [(#¥((1) - " ((O))M
< rl6(®) = ¥(®)lx.

This implies that the mapping ®V : X — X is a contraction mapping.
By the fixed point theorem of Banach space, ® possesses a unique
fixed point Z* in X such that ®Z* = Z*. We know from (2.1) and (2.3)
that Z* satisfies system (1.1), and therefore, it is an almost periodic
solution of system (1.1). The proof of Theorem 2.1 is now complete.

3. Uniqueness and exponential stability

In this section, we establish some results for the uniqueness and ex-
ponential stability of the almost periodic solution of (1.1).

THEOREM 3.1. Let (T3) hold. Suppose that all the conditions of
Theorem 2.1 are satisfied. Then system (1.1) has exactly one almost
periodic solution Z*(t). Moreover, Z*(t) is globally exponentially stable.

Proof. From Theorem 2.1, system (1.1) has at least one almost pe-
riodic solution Z*(t) = (z}(t), z3(t),...,z%(t))T with initial value ¢* =

(01(®), @5(2), ..., on(t)T. Let Z(t) = (z1(t), 22(t), ..., zn(t))T be an ar-
bitrary solution of system (1.1) with initial value ¢ = (¢1(t), p2(t),.. .,

en()T, Set y(t) = (y1(t),92(2), - -, 9 (t))” = Z(t) ~ Z*(t). Then

Yi(t) = — ci(t)ys +zn:aij (@) f7 (y;(t))
(3.1)
bis( / Ky (u) £ (3¢ — ) du,
wherei=1,2,...,n,
£ ) = 5 (® +230) - L0,
| K@it - wyiu = [ Kt -0 +2jle - w)
- fy(aj(t— w)du.
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Since p(F) = p(D7YEL) < 1, it follows from Lemma 1.4 that E, —
D‘lEL_ is an M-matrix. In view of Lemma 1.3, there exists a constant
vector £ = (&, &,...,&)T > (0,0,...,0)T such that

(E, — DYEL)¢ > (0,0,...,0)T.

Then,

n
—éiﬁ-i+z:§_j(a_ij+@kij)Lj<0, 1=1,2,...,n
j=1
Therefore, we can choose a constant d > 1 such that

(3.2) &=d&> sup |y, i=1,2, ...,n,
—oo<tL0

and

— &+ ) &(@g + biski) L

j—l

(3.3)
= [-G& + Z £;(a@ + bijkij)Lild <0, i =1,2,...,n
Set
Liw) = wti - 66+ D 6@+ | K0l dsL
(34) 5=1 0
1=1,2,...,n
Clearly, I';(w),i = 1,2,...,n, are continuous functions on [0, Ag]. Since

n 00
L) == 66+ Y 6@+ 5 [ 1Ky,
j=1 0
n —
< -GG+ &(@G +bgky)L; <0, i=1,2,...,m,
j=1
we can choose a positive constant A € [0, Ag] such that

LidN) = (A—&)& + Zﬁg(?f{j + b—”-/ooo [Kij(s)‘e’\sds)L]

=1
<0, :=12,...,n

We consider the Lyapunov functional
(36) V;«(t) = lyi(t)le)\ta i=12,...,n

(3.5)
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Obviously, for any y;(t) # 0, Vi(t) > 0. Calculating the upper right
derivative of V;(t) along the solution y(t) = (y1(t),%2(t), .-, yn(t))T of
system (3.1) with the initial value ¢ = ¢ — ¢*, we have

(3.7)

DY(Vit) < — alu(t)le™ + > @ Lyly;(t)|e™
i=1

n 00
3Bk [ 1Kl = wldu + Ngs 0]
=1

= [\ = @lyal®)] + Y @Lily; (¢)]

j=1
no_ o0
+ 3 BLs [ IRl (t— )l
j=1
where 1 =1,2,...,n.
We claim that
(38) V;(t) = |yi(t)'e>‘t <&, t>0, 1=12,...,n.
Contrarily, there must exist 7 € {1,2,...,n} and ¢; > 0 such that
(39) ‘/;(tz) =¢&i and V?(t) < é.j’v te (—OO, ti)a J=12,...,n,
which implies that
(3.10)
Vit;) =& =0 and Vj(t)—¢& <0,Yte (—o0, t;), j=1,2,...,n.

Together with (3.7) and (3.10), we obtain
0 < D (Vi(t:) - &)
= DF(Vi(t:))

(3.11) < [ =@t + > gLy, (k)]
j=1

n 0
+3 b1 /0 Ky ()l (8 — )] du)e
j=1
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S n
= (=@ + ) gLyl (t)le™
7j=1
n _ e}
+ Db / | K (u)lly; (t: — w)|eX ™ du
i=1 0

ox

n
< (A=-&)+ ij(@ + E; |Kij(5)|6)\sd5)LJ"
i=1 0
Thus,

0< (A =&+ &(@;+by /0 |Kij(s)|e**ds) L,
j=1

which contradicts (3.5). Hence, (3.8) holds. It follows that

(3.12) lyi(t)] < max {&}e™, t>0, i=1,2,...,n.
1<i<n

Letting ||@]| = ||¢ — ¢*|| > 0, it follows from (3.12) that we can choose
a constant M, > 1 such that

(3.13) max {&} < Mylle —¢*|l, i=1,2,...,n.
1<ikn
In view of (3.11) and (3.12), we get
£ — r* — i < . —At < M o AE — At
l2:(t) = 27 ()] = lyi(®)] < max {&}e™™ < Mollp —¢"lle™,
where 1 =1,2,...,n, t > 0. This completes the proof.

REMARK 3.1. Theorem A has been obtained under the assumption
that the row norm of matrix D™YEL is less than 1. Clearly, this implies
that p(D~'EL) < 1. Therefore, the existing results in [15] and [4] are
direct corollaries of Theorem 3.1 of this paper.

CoOROLLARY 3.1. Let (Ty), (Th), and (T2) hold. Suppose that E, —
D-YEL is an M-matrix. Then system (1.1) has at least exactly one
almost periodic solution Z*(t). Moreover, Z*(t) is globally exponentially
stable.

Proof. Noticing that E, — D™!EL is an M-matrix, it follows that
there exists a vector n = (M, 72,...,7,)7 > 0 such that

(3.13) (En, — D™YEL)p > 0,
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that is,
n
(3.14) —CiT); —I—Z(@ + bij)Lj'I]j <0, i=12,...,n
i=1
For any matrix norm ||- || and nonsingular matrix B, ||A||p = | B~1AB]||

also defines a matrix norm. Let B = diag(n1, 72,...,7). Then (3.14)
implies that the row norm of matrix B~!(D 'EL)B is less than 1.
Therefore, p(D~'EL) < 1. Corollary 3.1 follows immediately from The-
orem 3.1. ]

4. An example

In this section, we give an example to demonstrate the results ob-
tained in previous sections.

ExAaMPLE 4.1. Consider the following CNNs with continuously dis-
tributed delays:

(2(t) = —21(t) + §(sint) fi(21(t)) + g5(cost) fa(wa(t))
%( int) [7°(sinu)e™™ - fiz1(t — u))du
+3(cost) ;7 (sinu)e ™ fi(z2(t — u))du + Li(t),
y(t) = —z2(t) + (sin 2t) f1(z1(t)) + (cos 4t) fa(z2 (1))
+(sin 2t) f;°(sinu)e™ - fi(z1(t — u))du
+1(cos4t) f;° (sinu)e fa(z2(t — u))du + L(t),
25(t) = —a3(t) + 3(cos 4) f3(w3(1))
| +1(sin2t) [°(sinu)e ™™ f3(z1(t ~ u))du + I3(t),
wherefi(z) = fo(z) = fa(z) = 3(lz + 1| - |z = 1]), 1r(¢), I>(¢) and I5(t)
are almost periodic functions on R.
Notice that ¢ = é =¢é3 = L1 = =Ls=1l,a1 = bl =

(4.1) o

=
Q

1
b12-36, a3 = b1z =0, a21—b21—1 022—b22-4,a23~bz =ag] =

Il

|
l

by =ags = bsa =0, @33 = bzg = 1, k11 = k1o = ko1 = koo = k3g = 1.
Then, we get

D'EL=D"YA+ B)L =

O DO DOt
@ vl
= O O

Hence, we have

p(DYEL) = p(D"Y(A + B)L) = % <1.
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Therefore, it follows from Lemma 3.1 that system (4.1) has at least
exactly one almost periodic solution. Moreover, The almost periodic
solution is globally exponentially stable.

REMARK. (4.1) is a very simple form of DCNNs equations. One can
observe that || D~}(A+B)L||; = 5, where ||-||1 is the row norm of matrix.
Therefore, all the results in [2-6, 8, 13, 15, 16] and the references therein
can not be applicable to system (4.1). This implies that the results of
this paper are essentially new.

5. Conclusion

In this paper, cellular neural networks with continuously distributed
delays have been studied. Some sufficient conditions for the existence
and exponential stability of the almost periodic solutions have been es-
tablished. These obtained results are new and they complement pre-
viously known results. Moreover, an example is given to illustrate the
effectiveness of the new results.

References

[1] A. Berman and R. J. Plemmons, Nonnegative matrices in the mathematical sci-
ences, Academic Press, New York, 1979.

[2] J. Cao, Global exponential stability and periodic solutions of delayed cellular neural
networks, J. Comput. System Sci. 60 (2000), no. 1, 38-46.

3] , New results concering exponential stability and periodic solutions of de-
layed cellular neural networks, Phys. Lett. A 307 (2003), no. 2-3, 136-147.

[4] A. Chen and J. Cao, Ezistence and attractivity of almost periodic solutions for
cellular neural networks with distributed delays and variable coefficients, Appl.
Math. Comput. 134 (2003), no. 1, 125-140. '

[5] A. Chen and L. H. Huang, Existence and attractivity of almost periodic solutions
of Hopfield neural networks, (Chinese) Acta Math. Sci. Ser. A Chin. Ed. 21 (2001),
no. 4, 505-511.

[6] Q. Dong, K. Matsui, and X. Huang, Ezistence and stability of periodic solutions
for Hopfield neural network equations with periodic input, Nonlinear Anal. 49
(2002), no. 4, Ser. A; Theory Methods, 471-479.

[7] A. M. Fink, Almost periodic differential equations, Lecture Notes in Mathematics,
Vol. 377, Springer-Verlag, Berlin-New York, 1974.

[8] S. Guo and L. Huang, Periodic solutions in an inhibitory two-neuron network, J.
Comput. Appl. Math. 161 (2003), no. 1, 217-229.

[9] , Stability analysis of a delayed Hopfield neural network, Phys. Rev. E (3)
67 (2003), no. 6, 061902, 7 pp. _

[10] J. Hale and S. M. Verduyn Lunel, Introduction to functional-differential equa-

tions, Applied Mathematical Sciences, 99. Springer-Verlag, New York, 1993.




Existence and exponential stability of almost periodic solutions 459

[11] C. Y. He, Almost periodic differential equation, Higher Education Publishing
House, Beijin, 1992. [In Chinese]

[12] X. Huang and J. Cao, Almost periodic solutions of inhibitory cellular neural
networks with with time-vary delays, Phys. Lett. A 314 (2003), no. 3, 222-231.
[13] H. Huang, J. Cao, and J. Wang, Global exponential stability and periodic solutions
of recurrent cellular neural networks with delays, Phys. Lett. A 298 (2002), no.

5-6, 393-404.

[14] J. P. Lasalle, The stability of dynamical systems, Regional Conference Series in
Applied Mathematics. STAM, Philadelphia, 1976.

[15] Z. Liu, A. Chen, J. Cao, and L. Huang, Ezistence and global exponential stability
of almost periodic solutions of BAM neural networks with continuously distributed
delays, Phys. Lett. A 319 (2003), no. 3-4, 305-316.

[16] Z. Liu and L. Liao, Ezistence and global exponential stability of periodic solutions
of cellular neural networks with time-vary delays, J. Math. Anal. Appl. 290 (2004),
no. 1, 247-262.

Bingwen Liu

College of Mathematics and Information Science
Jiaxing University

Jiaxing, Zhejiang 314001, P. R. China

E-mail: liubw007@yahoo.com.cn

Lihong Huang

College of Mathematics and Econometrics
Hunan University

Changsha 410082, P. R. China



