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GENERALIZED BROWNIAN MOTIONS
WITH APPLICATION TO FINANCE

DoNnGg MyYuUNG CHUNG AND JEONG HYUN LEE

ABSTRACT. Let X = (X:,t € [0,7]) be a generalized Brownian
motion(gBm) determined by mean function a(t) and variance func-
tion b(t). Let L?(jz) denote the Hilbert space of square integrable
functionals of X = (X; — a(t), t € [0,T]). In this paper we con-
sider a class of nonlinear functionals of X of the form F'(-+a) with
F € L*(2) and discuss their analysis. Firstly, it is shown that such
functionals do not enjoy, in general, the square integrability and
Malliavin differentiability. Secondly, we establish regularity condi-
tions on F for which F(-+ a) is in L*(i) and has its Malliavin
derivative. Finally we apply these results to compute the price and
the hedging portfolio of a contingent claim in our financial market
model based on a gBm X.

1. Introduction

Let (B(t) = B(t,w); t € [0,T]) be a 1-dimensional Brownian motion
on a probability space (0, F,P) and [0, T] such that B(0,w) =0 a.s. P.
In the Black-Scholes model (see [6]), it is assumed that the log price of
underlying asset follows a process Y(t) = 0t + oB(t), t € [0,T] where
0 is a constant drift and o is a constant volatility. Let b be a strictly
increasing and absolutely continuous function on [0,7] with b(0) = 0.
For the process Y (t), we consider a deterministic time-changed process:

(1.1) Z(t) = 0b(t) + o B(b(t)).

We note that the process Y = (Y (t), t € [0,7T]) is homogeneous in time,
while the process Z = (Z(t), t € [0,T]) is inhomogeneous in time.
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It is interesting to note that 8(¢) can be considered as a new time scale
which reflects the trading activity in financial market. The exact form
of the time change can be calibrated to reproduce the term structure
of option prices. Thus the process Z can be used to model the term
structure of volatility in the option pricing theory.

It is easy to see that the process Z can be written in a different form:

(1.2) Z@:ﬂMﬂ+A\M%MB@,

where B is a Brownian motion w.r.t. the filtration Firy = 0(B(s)),s <
b(t). It is indeed the solution to the stochastic differential equation

(1.3) dZ(t) = 0V (t)dt + /¥ (t)dB(¢).

We note from (1.2) and (1.3) that the process Z is a semimartimgale as
well as a continuous diffusion process.
From (1.1), we may introduce a stochastic process of the form:

(1.4) X(t) = a(t) + B(b(t)), t € [0,T],

where a is of bounded variation function on [0, T] with a(0) = 0 (cf. [8]).

In [1, 3] such a process X has been used to study generalized analytic
Feyman integrals and generalized analytic Fourier- Feynman transforms.
In [2] the conditional function space integral of functionals of the process
X was studied. In this paper we take such a process X as a model in
finance and then study some stochastic calculus for the process X and
its application to finance.

The organization of this paper is as follows. In Section 2 we first
discuss the existence of such a process X. In Section 3 we consider a
class of nonlinear functionals of X of the form F(-+ a) with F € L2(j)
and then discuss their square integrability. In Section 4 we discuss the
Malliavin differentiability for such functionals of X. In Section 5 we
apply our results to compute the price and the hedging portfolio for a
contingent claim in a market model based on X.

2. Preliminaries

Let (Co[0, T}, B(Cp[0,T]), myw) be the Wiener measure space. Let a €
Co[0, T} be of bounded variation on [0, T] and let b € Cy[0, T] be strictly
increasing and of bounded variation on [0,7"]. Then by Theorem 14.2
([13], p.187), there exists a Gaussian measure 4 on (Co[0, T, B(Co[0, T]))
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such that the coordinate process defined as X (¢,z) = z(t) .is a continu-
ous additive process on (Q2, B, P) = (Cy[0, T}, B(Co[0,T7), 1) and [0,T7,
on which the probability distribution of X (t2, ) — X(t1,-), t1 < t2 is
normally distributed with mean a(t2) — a(t1) and variance b(t2) — b(t1).
Let fi denote the Gaussian measure for the case a = 0.

The stochastic process X = (X;,t € [0,7T]) will be referred to as
the generalized Brownian motion(gBm) determined by mean function
a(t) and variance function b(t). We will write the probability space
(Co[0, T, B(Co[0,T7), 1) as Cop[0, T] = (Cap[0, T, B(Cap[0, T]), ). Let
Cop[0,T] = C[0,T]. Let E[F](resp. E(F)) denote the expectation of a
functional F' on the space C, [0, T] (resp. Cy[0,T]).

Let X ~ gBm(a(t),b(t)) denote the generalized Brownian motion
determined by a(t) and b(t). Then we note that X is an L?—process
and B(C,[0,T]) = o(X) (the smallest o-algebra for which each X; is
measurable). We consider two Hilbert spaces associated to X. The one is
the non-linear Hilbert space of X: L?(n) = L?(Cyp[0,T),0(X), ). The
other one is the non-linear Hilbert space of X = (X = X; —a(t), t €
[0,T]): L2(ii) = L*(Cy([0,T],0(X),[i). Each element of L?(u) (resp.
L%(f1)) is called L?(u)-functional (resp. L%(ii)-functional).

We now introduce three function Hilbert spaces L2[0, T, Lﬁ,b[O,T]

and L2[0, T]". We will assume throughout this paper that a(t) is an ab-
solutely continuous function on [0, 7] with a(0) = 0 and a'(t) € L?[0, T},
and b(t) is a differentiable function with b(0) = 0 and by < b (t) < be
(by,by > 0) for all ¢ € [0, T.

Let L2[0, T] denote the Hilbert space of real valued Lebesgue-Stieltjes
square integrable functions on [0, T'] with respect to b equipped with the
inner product (f, g) = fOT f(8)g(s)db(s) and the norm || - ||y = 1/(:,")s.
In particular, if b(t) = t on [0, T}, we put L2[0,T] = L2[0,T) and (-,-)y =
(,)and ||-|ls = || - ||]. For E C [0,T], 1g will denote the indicator
function of the set E.

Let L?l,b([O, T)) denote the Hilbert space LZ([0, T]) with inner product

(f8)ap = (9 + < /O " fda, /0 i gda>R,

where (-, )r is the inner product on R. We note that the three norms
I-1l, | - lls and || - |la,» are equivalent. Hence the spaces L2[0,T], L[0,T]
and Lg,b([O, T1) coincide as sets and furthermore, (Lib([O, T, (s )ap) is
a separable Hilbert space.
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Let S be the set of all step functions on [0,T], f = Z;:(} Cil(t;t541]5
where 0 =ty < t; <ty <--- <t, =T and ¢; € R. Let H(X) be the
closed linear subspace of L?(p) spanned by X. We define 0 : § — H(X)
by e(f) E —O ¢ (Xt]+1 Xt ) = Z] =0 c][(Xt]-H Xt]) + ( (t_]+1)
a(t;))]. For all f,g € S, we have E[0(f fo fda, E[6(f)6(9)] =
(f,9)ap- Thus the correspondence f — 0( f) is an inner product pre-
serving mapping from S to H(X). Hence 6 is uniquely extended to
L2,[0,T). For f € L2,[0,T], we call 8(f) the stochastic integral of f
against X and write it as

(2.1) / fdX, or / fdX + / fda.

It has been shown (see [7]) that L2 ([0, T]) =

Let L2{0 T|" denote the Hilbert space of real—valued Lebesgue-Stielt-
jes square integrable symmetric functions on R™ with respect to [’
db(t;) equipped with the inner product

J=1

<fmgn>b,n:/[0’T]n fn(tla" n)gn t1,...,1 Hdb

and the norm || - || = /(- o .n.

3. Square integrable functionals of X

For each ¢ > 0, the Hermite polynomial H,, ;2 of degree n with
parameter o2 is defined by

22\ d" x?
31 Hople) = (oo (o ) e (- 7)) 21

dx™
and Hj ,2(z) = 1. We note from (7] that the mapping f — fOT fdX is
a linear isometry from LZ[0,T] into L2(jz). For f € L2[0,T) and n > 0,
we put In(f®")(Z) = Hy, 52 fo fdX). Then for f € L2[0 T, we have

(3.2 L@+ a) = Y () 1)@

k=0

where gF = fek. (f(;‘r fda)**. The mapping I, : f®"  L,(f®)(-) can
be extended to a linear continuous mapping from I:Z [0, T)™ to L?(ji)(see
[4]). We denote this extension by I,(f,). The image I,(f,) of fn €
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fjg [0, T|™ is indeed the multiple Wiener integral with respect to the pro-
cess X.

The following lemma shows that the mapping f®" + I,(f®")(- + a)
can be extended from L2[0,T]" to L*(j1). For f, € LZ[0,T]", we denote
by Kn(fx)(-) the image of f, under this extension. :

LEMMA 3.1. For f, € f,%[O,T]”, we have

n

(5.3) Kol = 3 () (a0,

k=0

where g = ( f,g"_k), a®(=k)) which indicates the following integral :

n—k
fn(tl,...,tk,sl,...,sn_k) da(sj).
</[\0,T]n—k )I:Il

Proof. Let &, be the linear space spanned by E, = { f®"] f e
L2[0,T1}. Define the mapping K, on &, by

o0

Ea(gn) =3 (’,:) Ii(gh), ¢n € En,

n=0

where gF = (qﬁ%”_k), a®m=k)) Now we extend K, linearly and continu-
ously from the space ﬁg [0, T]" to the space L?(fi) in the following way:
Let f, € L2[0,T)". Since &, is dense in L2[0,T]", we take a sequence
{¢n;}321 in &, such that ¢n; — f, in L2[0,TT™ as j — co. We observe

that
n
> ( )Iz(gfz,- —gb,)

=0

=3 () vl - ol

=0

n d e

Z( ) WIS, - ¢h

=0

2

”Kn(¢nj) - (¢nk ”Lz(u

L2(p)

where gfzj = (d)zj a®™=1). Hence the sequence {K, (fn;)}52; is Cau-
chy in L?(f1). Define

Kn(fn) = JlggoKn(¢n,) in L?(1).
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It can be shown that the limit is independent of the choice of a sequence
{#n; };io and so the extension K, is well-defined and is a continuous

linear mapping from the space f;g[O, T to L2(j). |

By the Wiener-Ito decomposition theorem (see [4], [5]), any functional
F € L?(j1) can be represented uniquely as

oo
(3.4) F= ZIn(fn)a fa € LF[0, 7)™
n=0
In view of this fact, we shall write F' ~ (f,,) for notational simplicity.
The L?(fi)-norm of F is given by
1

171 = (Sonlsuli )

n=0

If F ~ (f,) € L*(j1), then by Lemma 3.1, we obtain the formal sum:

= S Kalfa)( ZZ()Ik(gn ,

n=0 n=0 k=0

where g&f = ( fy(bn_k),a‘g("‘k)), kE > 1. We shall give an example of
L?(j1)-functional F' for which the formal sum F(- + a) is not in L?(f1)
for some a € Cy[0,T)(see Example 3.2 below). Due to this example,
we need to impose an appropriate regularity on the space L?(ji) so that
each F(- + a) is in L?(fi)(see Theorem 3.3 below). For this, define the
following weighted Hilbert space (see [11]): for a > 1, let

(3.5)

L= 30 = {F e P : F~ (1) and 3 nlo | fulltn < oo},
n=0

It is easy to see that L? = L%(ji) and L2 is a Hilbert space under the
norm

3.6) Flloa = 3 nl| fn 2na E’
( 17 Q:z l nb,,)

where || frllbne = [0 fallon, fn € f/%[O, T]™. For any 1 < a3 < ag, we
have the continuous inclusion: L2, c L2 c L.

The following example shows that there exists an F ~ (f,,) € L%(j1)
such that F,(-) = F(- +a) & L?(j1).
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EXAMPLE 3.2. Let F ~ (f,), where f, = forn>1

/e

and fo = 0. Then we have

Zn'ufnubn Zn( \/——> b(T)"~Z 1<,

so that F € L?(i). We now show that F, may not be in Lz(”)
We note that F, = > ;20 Ix(hy), where hy = Y00, (7)gk and gk =

1
(T 1%k > 1. TakeaECO,T with a(T) > 0.
n n!b(T)” ( ) [0,T] = 0[ ] ( )

Then | hg|lpx > |](kzl)gk+1||b,k. Hence we have

oo o
Z k! || Al g > Z kU (k+1)gk a3
k=0

_ a(T) g
B Z_% & (\/(k + 1)!b(T)k+1> ")

a(T? = 1

so that F, ¢ L?(fi).

The following theorem gives the regularity condition on F for which
F, belongs to L*(1).

THEOREM 3.3. Let F ~ (f,) € L%(i) and let Fo(%) = F(& + a) for
a € Col0,T]. If (fn) is in L2 for some a > 1, then F, € L?(ji) and its
chaos expansion is given by Fy = 3 72 In(hy), where by =307 (3) gk
and gk = ( (n—k) ,a® k) k> 1.

Proof. Let F ~ (f,) € L?(j1) with (f,,) € L2. Then, by using Lemma
3.1 and changing the order of summation, we obtain F, = > 72, Ix(hg),

where by = Y o0, (7)g% and gF = ( T(L"_k),a®("‘k)), k > 0. In order to

n=~k

justify this assertion, it suffices to show that > %2 o k!l|hg||Z, < oo. By
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using the Holder inequality and the assumption that a > 1, we see that

oo

> KlAells

k=0
> 2
n
< k! k
< S 0( 3 (3 ko)
o 00 2
n+k
- Zm(Z( )||gﬁ+k||b,k>
n=
3 (Nt k da
< Zk'(Z( )an+k||bn+k o )
k=0 n=0
o0 [o o] 1 k (n-'—k)' da n\ 2
_ % 1\* /I Rl da
_ gk,(; (n+ Bl fosillomsk % (a> ot R de b)
< Ek'z n—i—k an-i—k”bn-l—kaz(—i‘k')—z(—) d_b.
k=0 n=0 -0 n'k: o b
gy 2% o
1 (n+k)! da
< FE xS LS (_> da
n=0 TL' k=0 n'k’ o db b
o0
2 _1_ _ —(n+1) da
= ||F|l5 EZ: o (1-a” =
= “F“i X (1 - 01‘2) exp (H 1 — 2)—1) < 00
This completes the proof. 0

4. Malliavin differentiability of functionals of X

Let L2([0,T] x Cy[0,T]) denote the set of all stochastic processes

u(t,z) on Cp[0,T] and [0,T] such that E[f0 2(t,z)db(t)] < co. Let 9
be a continuously differentiable function with bounded derivative and
G ~ (gn) € L?(ft). Then the functional F = ¥(G) is called Malliavin
differentiable if

(4.1) DiF = Dyp(G) = Zn[n 1(gn (-
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converges in L?(ji) for almost everywhere t with respect to db. The set
of all such Malliavin dlfferentlable functionals with being in L?(f) is
denoted by D. For a > 1, let D3? denote the set ofall F ~ (f,) € L?(f1)
such that > °°  nn! ”fn”bna < co. Put ID) = D42, It is well-known
(see [4], [9]) that D2 is indeed the completion of D with respect to the
Hilbertian norm ||F||y 5 = (E[F)? + E[| D:F|2])z.

DEFINITION 4.1. Let F' € DbY2) 50 that there exists a sequence {F,,} C
D such that F,, — F in L?(ji) and {D;F,} is convergent in L2([0,T) x
Cyl0,7]). Then we define DiF = lim, ,ooD:¢F,. The limit D;F €
L2([0, T] x Cy[0,T)) is called the Malliavin derivative of F.

The following example shows that there exists an F ~ (f,,) € L%(ji)
such that F' € Db? but F, ¢ D2 for some a € Co[0, T).

1
EXAMPLE 4.2. Let F' ~ (f,) where f, = ———— [o T] forn>1
n

nn!b(T)™
and fo = 0. Then we have

o0

= 2
7;]””'|lfnllbn Znn|(n\/m> Z

so that F' € D2, Take a € Cp[0,T] with a(T) > 0. Then we note that
Tk 19k

Fa = Y320 Te(hi), where hy = 3502 (3) gk and g = W_ oy

k > 1. Then ||hg|lpx > ||(k:1)gl;§+1”b,k. Hence we have

[o ¢] o0
> kkl |2, > Ekk'u (k+1)gk 1112,

k=0
2
— Z kk! (\/ P )'b(T)k“) b(T)*

a,(T)2 >
o(T) kz=0 k+1

so that F, ¢ D12,

The following theorem gives the regularity condition on F for which
F, belongs to D2,

THEOREM 4.3. Let F ~ (f,) € L?(ji) and let o € R such that

<1+ da

1
T ) If (f,) € D2, then F, € D2, and hence F, has
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the following integral representation :
(4.2) F, = E[F, / BID | )X (2).

Proof. By Theorem 3.3, we have F,,(-) € L%(ji) and F, = 350 o I (hi),
where hy = 30, (})gk and gf = (f"F a®n=R)) and hence F €
L%(y). To prove that F, € D2, it suffices to show that Y s, kk!||hk]|§’,c

-k
< 00. By using the inequality ——— < n, we have

(n—k)!

o n

< |

< Zkk ( (k ||gn1|bk)
k=0 n=k

)

(f; ()| 22
)
) -

db

||E/%8

n=k
n—k\ 2
-k
Il =17 () )

2
Y fall2n ><c>

n

=2kk’(§(ﬁ

(o
(Zm(z)nfnnbn -1yt xc)
_ ;nn!ufnn%,na?

o0
=Y nnl|falfne x C,
n=>0

I/\
>

AN

where C =3 ° (cll —“bl) Hence it follows that F, € DY2, so that by

the Clark-Ocone theorem (see [9]), we have the representation (4.2). O

EXAMPLE 4.4. For f € L2[0, T}, consider a functional given by F(z) =
exp(fy fdX (@) = 3I/1}). Let G(#) = exp(fy fdX(z) — 3]|I}3)- Then
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®n
we see that G ~ (%) and F(z) = G(Z +a) = Go(Z). We observe that

for all o > 1, we have

xO f®n
>l T
=0 n.

Thus by using Theorem 4.3, we have Go(-) € D2, Since G,(-) =

00 00 n 1 n— .
Y heoIe(hi)(-), where hy = Y 27 (k)gfg)k : (foT fda)™ %, the Malli-
avin derivative of Gy is given by DyGo(Z) = Go(Z)f(t).

2
= a®||f|[} x exp(a®| f}) < co.

bn,a

5. Application to finance

In this section we apply our results obtained above to compute the
price and the hedging portfolio for a contigent claim in a financial market
based on gBm.

Let a(t) and b(t) be as in Section 2. We consider a financial market
consisting of a stock S(t) and a bond A(t) whose prices are modeled by,
respectively,

(5.1)

A(t) = exp ( /0 t r(s)ds) and S(t) = So exp ( /0 “r(s)ds + X(t)),

where X (t) ~ gBm(a(?), b(t)) and r(t) is a continuous compound interest
rate at time t. It can be shown the the stock price process S(t) is risk

neutral under the measure P if and only if a(t) = —-;—b(t). Under this
2

d
risk neutral model, we see that H d—ZH = b(T)/4.
b

A portfolio ¢(t) = (P1(t), p2(t)) is defined as a pair of Fi-adapted
stochastic processes, which gives the number of units of A(t) and S(t)
invested at time ¢, respectively. The market value of the portfolio at
time ¢ is given by

(5.2) V(t) = ¢1(0)A(E) + ¢2(2)S(1),0 <t < T.

A portfolio ¢ is called self-financing if dV (t) = ¢1(t)dA(t) + ¢p2(t)dS(t).
From now on we assume that ¢ has to be self-financing. Let V(t) =
V(t)/A(t). Then by the integration by part formula, we have

(5:3) dV (t) = ¢2(t)dS(t),



368 Dong Myung Chung and Jeong Hyun Lee

where $(t) = S(t) /A(t). Since S: (t) = Soexp(X(?)), it follows from the
Ito lemma that dS(t ) = S(t)dX(t). Thus by (5.3) we have dV'(t) =
$2(t)S(t)dX (t), so that

(5.4) / $2(H)S()dX (t).

Let F be an Fr-measurable(i.e. a contingent claim)such that F(z) =
G(Z+a) with G € L2(ji). We note that F' = F/A(T) = Go/A(T) = G,
Then if G € D&? with o« > (1 + b(T)/4)}/? , by Theorem 4.3, we have

T
(5.5) F=E[f+ / EIDiCal FldX (8).
0

One problem in option pricing theory is to determine an initial value
V(0) and to find a portfolio ¢(t) such that V(T) = F, a.s.. Such a
portfolio ¢(t) is called the hedging portfolio for the contingent claim F.

The following theorem gives an answer for this problem in our market
model based on a gBm X.

THEOREM 5.1. Let F be an Fr-measurable(i.e. a contingent claim)
such that F(z) = G(Z + a) with G € L*(). If G € Dy° with o >
(1 + b(T)/4)}/? then the price of the claim F at t = 0 is given by
E[F] = EJA(T)"'F]. And the hedging portfolio ¢(t) = (¢1(t), $2(t)) for
the contingent claim F' is given by

(5.6) 1 (t) = V(t) —A%(t)S(t)

(5.7) $2(t) = exp ( - /tTT(S)d8> S(t)™ E[DiGa|F).

Proof. We need to find V(0) and ¢(t) such that V(T') = F a.s.. So
from (5.4) and (5.5), F' has two representations. Hence by uniqueness
the proof follows. O

EXAMPLE 5.2. Let F be a contingent claim of which the payoff is
given by
F(z) = (L(T,z) — K)*, = € Cy3[0,T],
where K is the strike price and L(T,z) = exp{# fOT log S(t)dt}. Such
a contingent claim is called the geometric average rate call option (see

[12], p.224). We shall determine the price of F' and find its hedging
portfolio, by using Theorem 5.1.
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We first observe that ;, fOT logS(t)dt = C + [T f(t)aX(t) — 1|12,
where C = logSy+ + fo fo s)dsdt+ || f||Z and f(t) = (T —t). Then

L(T,z) = ¢ x exp(fy f(£)dX(t) — 3[I£[).

We put M(T,Z) = eC X exp fo fdX — 21 £12). Then M(T,% +a) =
M,(T,Z) = L(T,z). 1t follows from Example 4.4 that M,(T,-) € D2
and DM, (T,z) = f(t)Mu(T,z). Let ¥(u) = (v — K)*, u € R, and
let G(z) = Y(M,(T,Z)). Let us take a sequence {¢,} of continuously
differentiable functions with bounded derivative, converging to 1 such
that

Un(u) = $(w) for ju— K| > % and [ (u)| < 1 for all u € R.
Then each Gy,(+) = Yn(My(T,)) is in DV? and we have

DG ( ) wn( ( ,'))DtMa(Ta')'

Now we show that G, — G in Db2. We first shall show that G, —
G in L%(i). We note that |Gn(Z)| < |Mu(T,%)| and M,(T,-) € L*(ji).
Since Gr(Z) — G(&) pointwise, it follows from the dominated conver-
gence theorem that G, — G in L2(fi). Let A = {% : M,(T, %) > K}. We
next shall show that D;Gn(-) — 1a(-)DsMo(T,-) in L2([0, T} x Cy[0, T1).
We note that |D;Gn(Z)| < |DyM,o(T, &)| and D:Mo(T, %) € LE([0,T] %
Cy[0,T]). Since DG (Z) — 14(Z)DM,(T, T) pointwise, it follows from
the dominated convergence theorem that D;G,(-) — 14(-)D:M,(T, ) in
LZ([0,T] x Cb[0,T]). From these two norm convergences, we conclude
that G, — G in D2, and the Malliavin derivative of G is given by
DiG(%) = 14(3)f () M(T, 5).

By the result of Theorem 5.1, we obtain the hedging portfolio of

stock:
T —
da(t) = exp (— / r(u)du)S(t)*(%)
X E[Mo(T, )1k 00y (Ma(T, -))| 7],

and the price of F is given by V(0) = exp(— fo 8)ds)E[F]. Through
simple calculations, it can be shown that

V(0) = exp ( - /0 ’ r(s)ds)

X {50 xp(R(T) +m(T) + 50*(T)N(dr) ~ KN ()},
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R(T) = % /0 ’ ( /0 sr(u)du)ds,
m(r) = 5| | Tf(s)dX(s>] -/ = (1= 7 )to)

A1) = Vas | [ ' faxe) = [ ' (1- —;—)2db<s>,
dy =dy + o(T),

& — m(T) + R(T") + log(Sp/K)
2 O'(T) 3

T 1 U2
N(.’L‘):/ ——gexp(——i)du,zER
—~00
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