Coexpression of Protein Disulfide Isomerase (PDI) Enhances Production of Kringle Fragment of Human Apolipoprotein(a) in Recombinant Saccharomyces cerevisiae

  • Cha Kwang-Hyun (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Kim Myoung-Dong (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Lee Tae-Hee (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Lim Hyung-Kweon (Mogam Biotechnology Research Institute) ;
  • Jung Kyung-Hwan (Department of Food and Biotechnology, Chungju National University) ;
  • Seo Jin-Ho (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University)
  • Published : 2006.02.01

Abstract

In an attempt to increase production of LK8, an 86-amino-acid kringle fragment of human apolipoprotein(a) with three disulfide linkages, protein disulfide isomerase (PDI) was coexpressed in recombinant Saccharomyces cerevisiae harboring the LK8 gene in the chromosome. Whereas overexpression of the LK8 gene without coexpressing PDI was detrimental to both host cell growth and LK8 production, coexpression of PDI increased the LK8 production level by 2.5-fold in batch cultivation and 5.0-fold in fed-batch cultivation compared with the control strain carrying only the genomic PDI gene.

Keywords

References

  1. Carmeliet, P. and R. K. Jain. 2000. Angiogenesis in cancer and other disease. Nature 407: 249-257 https://doi.org/10.1038/35025220
  2. Cha, K. H., M. D. Kim, T. H. Lee, H. K. Lim, K. H. Jung, and J. H. Seo. 2004. Selection of optimum expression system for production of kringle fragment of human apolipoprotein(a) in Saccharomyces cerevisiae. Biotechnol. Bioprocess Eng. 9: 523-527 https://doi.org/10.1007/BF02933497
  3. Davis, R., K. Schooley, B. Rasmussen, J. Thomas, and P. Reddy. 2000. Effect of PDI overexpression on recombinant protein secretion in CHO cells. Biotechnol. Prog. 16: 736- 743 https://doi.org/10.1021/bp000107q
  4. Harmsen, M. M., M. I. Bruyne, H. A. Raue, and J. Maat. 1996. Overexpresson of binding protein and disruption of the PMR1 gene synergistically stimulate secretion of bovine prochymosin but not plant thaumatin in yeast. Appl. Microbiol. Biotechnol. 46: 365-370 https://doi.org/10.1007/BF00166231
  5. Kim, H.-E., R. Qin, and K.-S. Chae. 2005. Increased production of exoinulinase in Saccharomyces cerevisiae by expressing the Kluyveromyces marxianus INU1 gene under the control of the INU1 promoter. J. Microbiol. Biotechnol. 15: 447-450
  6. Kim, J. S., H. K. Yu, J. H. Ahn, H. J. Lee, S. W. Hong, K. H. Jung, S. I. Chang, Y. K. Hong, Y. A. Joe, S. M. Byun, S. K. Lee, S. I. Chung, and Y. Yoon. 2004. Human apolipoprotein(a) kringle V inhibits angiogenesis in vitro and in vivo by interfering with the activation of focal adhesion kinases. Biochem. Biophys. Res. Commun. 313: 534-540 https://doi.org/10.1016/j.bbrc.2003.11.148
  7. Kim, M. D., S. K. Rhee, and J. H. Seo. 2001. Enhanced production of anticoagulant hirudin in recombinant Saccharomyces cerevisiae by chromosomal ${\delta}$-integration. J. Biotechnol. 85: 41-48 https://doi.org/10.1016/S0168-1656(00)00376-X
  8. Kim, M. D., K. C. Han, H. A. Kang, S. K. Rhee, and J. H. Seo. 2003. Coexpression of BiP increased antithrombotic hirudin production in recombinant Saccharomyces cerevisiae. J. Biotechnol. 101: 81-87 https://doi.org/10.1016/S0168-1656(02)00288-2
  9. Lee, F. W. F. and N. A. Da Silva. 1997. Improved efficiency and stability of multiple cloned gene insertions at the ${\delta}$- sequences of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 48: 339-345 https://doi.org/10.1007/s002530051059
  10. Lee, J. S., J. Yu, H. J. Shin, Y. S. Kim, J. K. Ahn, C. K. Lee, H. Poo, and C. J. Kim. 2005. Expression of Hepatitis C virus structural proteins in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 15: 767-771
  11. Lim, H. K., S. G. Kim, K. H. Jung, and J. H. Seo. 2004. Statistical selection of amino acids fortifying a minimal defined medium for a high-level production of the kringle fragments of human apolipoprotein(a). J. Microbiol. Biotechnol. 14: 90-96 https://doi.org/10.1159/000079427
  12. Lumb, R. A. and N. J. Bulleid. 2002. Is protein disulfide isomerase a redox-dependent molecular chaperone? EMBO J. 21: 6763-6770 https://doi.org/10.1093/emboj/cdf685
  13. Moralejo, F. J., A. J. Watson, D. J. Jeenes, D. B. Archer, and J. F. Martin. 2001. A defined level of protein disulfide isomerase expression is required for optimal secretion of thaumatin by Aspergillus awamori. Mol. Genet. Genome 266: 246-253 https://doi.org/10.1007/s004380100550
  14. Parekh, R., K. Forrester, and D. Wittrup. 1995. Multicopy overexpression of bovine pancreatic trypsin inhibitor saturates the protein folding and secretory capacity of Saccharomyces cerevisiae. Prot. Exp. Purif. 6: 537-545 https://doi.org/10.1006/prep.1995.1071
  15. Ro, H. S., M. S. Lee, M. S. Hahm, H. S. Bae, and B. H. Chung. 2005. Production of active carboxypeptidase Y of Saccharomyces cerevisiae secreted from methylotropic yeast Pichia pastoris. J. Microbiol. Biotechnol. 15: 202-205
  16. Shusta, E. V., R. T. Raines, A. Pluckthun, and K. D. Wittrup. 1998. Increasing the secretory capacity of Saccharomyces cerevisiae for production of single-chain antibody fragments. Nat. Biotechnol. 16: 773-777 https://doi.org/10.1038/nbt0898-773
  17. Smith, J. D. and A. S. Robinson. 2004. Overexpression of an archaeal protein in yeast: Secretion bottleneck at the ER. Biotechnol. Bioeng. 79: 713-723 https://doi.org/10.1002/bit.10367
  18. Tu, B. P., S. C. Ho-Schleyer, K. J. Travers, and J. S. Weissman. 2000. Biochemical basis of oxidative protein folding in the endoplasmic reticulum. Science 290: 1571- 1574 https://doi.org/10.1126/science.290.5496.1571
  19. Xiao, R., B. Wilkinson, A. Solovyov, J. R. Winther, A. Holmgrent, J. Lundstrom-Ljung, and H. F. Gilbert. 2004. The contributions of protein disulfide isomerase and its homologues to oxidative protein folding in the yeast endoplasmic reticulum. J. Biol. Chem. 279: 49780-49786 https://doi.org/10.1074/jbc.M409210200
  20. Zhao, Y., W. Ge, Y. Kong, and C. Zhang. 2003. Cloning, expression, and renaturation studies of reteplase. J. Microbiol. Biotechnol. 13: 989-992