Enhancing the Solubility of Recombinant Akt1 in Escherichia coli with an Artificial Transcription Factor Library

  • Published : 2006.02.01

Abstract

A combinatorial library of artificial transcription factors (ATFs) was introduced into the bacterial cells that expressed the Akt1-GFP fusion protein. By measuring the level of fluorescence generated by the transformed E. coli cells, we were able to obtain clones in which ATFs increased the solubility of the Akt1. Our results show that ATF library is a useful tool for increasing the solubility of selected recombinant proteins in E. coli.

Keywords

References

  1. Ashiuchi, M., T. Yoshimura, T. Kitamura, Y. Kawata, J. Nagai, S. Forlatov, N. Esaki, and K. Soda. 1995. In vivo effect of GroESL on the folding of glutamate racemase of E. coli. J. Biochem. (Tokyo) 117: 495-498 https://doi.org/10.1093/oxfordjournals.jbchem.a124735
  2. Bae, K. H., Y. D. Kwon, H. C. Shin, M. S. Hwang, E. H. Ryu, K. S. Park, H. Y. Yang, D. K. Lee, Y. Lee, J. Park, H. S. Kwon, H. W. Kim, B. I. Yeh, S. H. Sohn, J. Yoon, W. Seol, and J. S. Kim. 2003. Human zinc fingers as building blocks in the construction of artificial transcription factors. Nat. Biotechnol. 21: 275-280 https://doi.org/10.1038/nbt796
  3. Beerli, R. R., B. Dreier, and C. F. III. Barbas. 2000. Positive and negative regulation of endogenous genes by designed transcription factors. Proc. Natl. Acad. Sci. USA 97: 1495- 1500
  4. Beerli, R. R. and C. F. III. Barbas. 2002. Engineering polydactyl zinc-finger transcription factors. Nat. Biotechnol. 20: 135-141 https://doi.org/10.1038/nbt0202-135
  5. Blancafort, P., L. Magnenat, and C. F. III. Barbas. 2003. Scanning the human genome with combinatorial transcription factor libraries. Nat. Biotechnol. 21: 269-274 https://doi.org/10.1038/nbt794
  6. Butt, T. R., S. Jonnalagadda, B. P. Monia, E. J. Sternberg, J. A. Marsh, J. M. Stadel, D. J. Ecker, and S. T. Crooke. 1989. Ubiquitin fusion augments the yield of cloned gene products in Escherichia coli. Proc. Natl. Acad. Sci. USA 86: 2540- 2544
  7. Di Guan, C., P. Li, P. D. Riggs, and H. Inouye. 1988. Vectors that facilitate the expression and purification of foreign peptides in Escherichia coli by fusion to maltose-binding protein. Gene 67: 21-30 https://doi.org/10.1016/0378-1119(88)90004-2
  8. Joung, J. K., E. I. Ramm, and C. O. Pabo. 2000. A bacterial two-hybrid selection system for studying protein-DNA and protein-protein interactions. Proc. Natl. Acad. Sci. USA 97: 7382-7387
  9. Kang, S. K., K. K. Cho, J. K. Ahn, S. H. Kang, K. H. Han, H. G. Lee, and Y. J. Choi. 2005. Cloning and expression of thermostable ${\beta}$-glycosidase gene from Thermus filiformis Wai33 A1 in Escherichia coli and enzyme characterization. J. Microbiol. Biotechnol. 14: 584-592
  10. LaVallie, E. R., E. A. DiBlasio, S. Kovacic, K. L. Grant, P. F. Schendel, and J. M. McCoy. 1993. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology 11: 189- 193
  11. Lee, D. H., W. J. Jun, J. W. Yoon, H. Y. Cho, and B. S. Hong. 2004. Process strategies to enhance the production of 5- aminoevulinic acid with recombinant E. coli. J. Microbiol. Biotechnol. 14: 1310-1317
  12. Lee, D. K., W. Seol, and J. S. Kim. 2003. Custom DNA-binding proteins and artificial transcription factors. Curr. Top. Med. Chem. 3: 645-657 https://doi.org/10.2174/1568026033452384
  13. Lee, D. K., Y. H. Kim, J. S. Kim, and W. Seol. 2004. Induction and characterization of taxol-resistance phenotypes with a transiently expressed artificial transcriptional activator library. Nucleic Acids Res. 32: e116 https://doi.org/10.1093/nar/gnh114
  14. Lim, H. K., S. U. Lee, S. I. Chung, K. H. Jung, and J. H. Seo. 2004. Induction of the T7 promoter using lactose for production of recombinant plasminogen Kringle 1-3 in Escherichia coli. J. Microbiol. Biotechnol. 14: 225-230 https://doi.org/10.1159/000076921
  15. Murby, M., M. Uhlen, and S. Stahl. 1996. Upstream strategies to minimize proteolytic degradation upon recombinant production in Escherichia coli. Protein Expr. Purif. 7: 129- 136 https://doi.org/10.1006/prep.1996.0018
  16. Park, K. S., D. K. Lee, H. Lee, Y. Lee, Y. S. Jang, Y. H. Kim, H. Y. Yang, S. I. Lee, W. Seol, and J. S. Kim. 2003. Phenotypic alteration of eukaryotic cells using randomized libraries of artificial transcription factors. Nat. Biotechnol. 21: 1208-1214 https://doi.org/10.1038/nbt868
  17. Park, S. L., M. J. Kwon, S. K. Kim, and S. W. Nam. 2004. GroEL/ES chaperone and low culture temperature synergistically enhanced the soluble expression of CGTase in E. coli. J. Microbiol. Biotechnol. 14: 216-219
  18. Rebar, E. J., Y. Huang, R. Hickey, A. K. Nath, D. Meoli, S. Nath, B. Chen, L. Xu, Y. Lian, and A. C. Jamieson. 2002. Induction of angiogenesis in a mouse model using engineered transcription factors. Nature Med. 8: 1427-1432 https://doi.org/10.1038/nm795
  19. Sanches, J. P., C. Ullman, M. Moore, Y. Choo, and N. H. Chua. 2002. Regulation of gene expression in Arabidopsis thaliana by artificial zinc finger chimeras. Plant Cell Physiol. 43: 1465-1472 https://doi.org/10.1093/pcp/pcf186
  20. Schein, C. H. 1989. Production of soluble recombinant proteins in bacteria. Bio/Technology 7: 1141-1149
  21. Schein, C. H. 1993. Solubility and secretability. Curr. Opin. Biotechnol. 4: 456-461 https://doi.org/10.1016/0958-1669(93)90012-L
  22. Smith, D. B. and K. S. Johnson. 1988. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67: 31-40 https://doi.org/10.1016/0378-1119(88)90005-4
  23. Waldo, G. S., B. M. Standish, J. Berendzen, and T. C. Terwilliger. 1999. Rapid protein folding assay using green fluorescent protein. Nat. Biotechnol. 17: 691-695 https://doi.org/10.1038/10904
  24. Wolfe, S. A., L. Nekludova, and C. O. Pabo. 2000. DNA recognition by $Cys_{2}His_{2}$ zinc finger proteins. Annu. Rev. Biophys. Biomol. Struct. 29: 183-212 https://doi.org/10.1146/annurev.biophys.29.1.183
  25. Yamanaka, H., M. Kameyama, T. Baba, Y. Fulee, and K. Okamoto. 1994. Maturation pathway of E. coli heat-stable enterotoxin I: Requirement of DsbA for disulfide bond formation. J. Bacteriol. 176: 2906-2913 https://doi.org/10.1128/jb.176.10.2906-2913.1994