Effect of Nutrients on the Production of Extracellular Enzymes for Decolorization of Reactive Blue 19 and Reactive Black 5

  • Lee Yu-Ri (Green Engineering Team, Korea Institute of Industrial Technology (KITECH), R&D Team, Jeonbuk Bioindustry Development Institute) ;
  • Park Chul-Hwan (Green Engineering Team, Korea Institute of Industrial Technology (KITECH)) ;
  • Lee Byung-Hwan (Green Engineering Team, Korea Institute of Industrial Technology (KITECH), Department of Chemical System Engineering, Keimyung University) ;
  • Han Eun-Jung (Green Engineering Team, Korea Institute of Industrial Technology (KITECH)) ;
  • Kim Tak-Hyun (Division of Radiation Application, Korea Atomic Energy Research Institute (KAERI), Department of Civil and Environmental Engineering, University of Wisconsin-Madison) ;
  • Lee Jin-Won (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Kim Sang-Yong (Green Engineering Team, Korea Institute of Industrial Technology (KITECH))
  • Published : 2006.02.01

Abstract

Several white-rot fungi are able to produce extracellular lignin-degrading enzymes such as manganese peroxidase (MnP), lignin peroxidase (LiP), and laccase. In order to enhance the production of laccase and MnP using Trametes versicolor KCTC 16781 in suspension culture, the effects of major medium ingredients, such as carbon and nitrogen sources, on the production of the enzymes were investigated. The decolorization mechanism in terms of biodegradation and biosorption was also investigated. Among the carbon sources used, glucose showed the highest potential for the production of laccase and MnP. Ammonium tartrate was a good nitrogen source for the enzyme production. No significant difference in the laccase production was observed, when glucose concentration was varied between 5 g/l and 30 g/l. As the concentration of nitrogen source increased, a lower MnP activity was observed. The optimal C/N ratio was 25 for the production of laccase and MnP. When the concentrations of glucose and ammonium tartrate were simultaneously increased, the laccase and MnP activities increased dramatically. The maximum laccase and MnP activities were 33.7 U/ml at 72 h and 475 U/ml at 96 h, respectively, in the optimal condition. In this condition, over 90% decolorization efficiency was observed.

Keywords

References

  1. Abadulla, E., T. Tzanov, S. Costa, K.-H. Robra, A. Cavaco- Paulo, and G. M. Gubitz. 2000. Decolorization and detoxification of textile dyes with a laccase from Trametes hirsute. Appl. Environ. Microbiol. 66: 3357-3362 https://doi.org/10.1128/AEM.66.8.3357-3362.2000
  2. Archibald, F. S. 1992. A new assay for lignin-type peroxidases employing the dye azure B. Appl. Environ. Microbiol. 58: 3110-3116
  3. Banat, I. M., P. Nigam, D. Singh, and R. Marchant. 1996. Microbial decolorization of textile-dye-containing effluents: A review. Bioresource Technol. 58: 217-227 https://doi.org/10.1016/S0960-8524(96)00113-7
  4. Benito, G.. G., M. P. Miranda, and D. R. De Los Santos. 1997. Decolorization of wastewater from an alcoholic fermentation process with Trametes versicolor. Bioresource Technol. 61: 33-37 https://doi.org/10.1016/S0960-8524(97)84695-0
  5. Chattopadhyay, S., R. S. Mehra, A. K. Srivastava, S. S. Bhojwani, and V. S. Bisaria. 2003. Effect of major nutrients on podophyllotoxin production in Podophyllum hexandrum suspension cultures. Appl. Microbiol. Biotechnol. 60: 541- 546 https://doi.org/10.1007/s00253-002-1149-7
  6. Choi, K., C. Park, S. Kim, W. Lyoo, S. H. Lee, and J. Lee. 2004. Polyvinyl alcohol degradation by Microbacterium barkeri KCCM 10507 and Paenibacillus amylolyticus KCCM 10508 in dyeing wastewater. J. Microbiol. Biotechnol. 14: 1009-1013
  7. Criquet, S., S. Tagger, G. Vogt, G. Iacazio, and J. L. Petit. 1999. Laccase activity of forest litter. Soil Biol. Biochem. 31: 1239-1244 https://doi.org/10.1016/S0038-0717(99)00038-3
  8. Demain, A. L., Y. Aharonowitz, and J. F. Martin. 1983. Metabolic control of secondary biosynthetic pathways, pp. 49-72. In: Vining, L. C. (ed.), BIochemistry and Genetic Regulation of Commercially Important Antibiotics. Addison- Wesley Reading, Massachusetts, U.S.A
  9. Dhawan, S. and R. C. Kuhad. 2002. Effect of amino acids and vitamins on laccase production by the bird's nest fungus Cyathus bulleri. Bioresource Technol. 84: 35-38 https://doi.org/10.1016/S0960-8524(02)00026-3
  10. Fu, Y. and T. Viraraghavan. 2001. Fungal decolorization of dye wastewaters: A review. Bioresource Technol. 79: 251-262 https://doi.org/10.1016/S0960-8524(01)00028-1
  11. Galhaup, C., H. Wagner, B. Hinterstoisser, and D. Haltrich. 2002. Increased production of laccase by the wood-degrading basidiomycete Trametes pubescens. Enzyme Microbiol. Technol. 30: 529-536 https://doi.org/10.1016/S0141-0229(01)00522-1
  12. Gianfreda, L., F. Xu, and J.-M. Bollag. 1999. Laccases: A useful group of oxidoreductive enzymes. J. Biorem. 3: 1-25 https://doi.org/10.1080/10889869991219163
  13. Hofrichter, M., K. Vares, K. Scheibner, S. Galkin, J. Sipila, and A. Hatakka. 1999. Mineralization and solubilization of synthetic lignin by manganese peroxidases from Nematoloma frowardii and Phlebia radiata. J. Biotechnol. 67: 217-228 https://doi.org/10.1016/S0168-1656(98)00180-1
  14. Johannes, C. and A. Majcherczyk. 2000. Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediators systems. Appl. Environ. Microbiol. 66: 524-528 https://doi.org/10.1128/AEM.66.2.524-528.2000
  15. Lee, S.-K. and S. B. Lee. 2002. Substrate utilization patterns during BTEX biodegradation by an o-xylene-degrading bacterium Ralstonia sp. PHS1. J. Microbiol. Biotechnol. 12: 909-915
  16. Park, C., Y. Lee, T.-H. Kim, B. Lee, J. Lee, and S. Kim. 2004. Decolorization of three acid dyes by enzymes from fungal strains. J. Microbiol. Biotechnol. 14: 1190-1195
  17. Park, C., Y. Lee, T.-H. Kim, M. Lee, B. Lee, J. Lee, and S. Kim. 2003. Enzymatic decolorization of various dyes by Trametes versicolor KCTC 16781. Korean J. Biotechnol. Bioeng. 18: 398-403
  18. Pasti-Grigsby, M. B., A. Paszczynski, S. Goszczynski, D. L. Crawford, and R. L. Crawford. 1992. Influence of aromatic substitution patterns on azo dye degradability by Streptomyces spp. and Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58: 3605-3613
  19. Ronne, H. 1995. Glucose repression in fungi. Trends Genet. 11: 12-17 https://doi.org/10.1016/S0168-9525(00)88980-5
  20. Spadaro, J. T. and V. Renganathan. 1994. Peroxidase-catalyzed oxidation of azo dyes: Mechanism of disperse yellow 3 degradation. Arch. Biochem. Biophs. 312: 301-307 https://doi.org/10.1006/abbi.1994.1313
  21. Sayadi, S. and R. Ellouz. 1995. Roles of LiP and manganese peroxidase from Phanerochaete chrysosporium in the decolorization of olive mill wastewaters. Appl. Environ. Microbiol. 61: 1098-1103
  22. Sumathi, S. and B. S. Manju. 2000. Uptake of reactive textile dyes by Aspergillus foetidus. Enzyme Microbiol. Technol. 27: 347-355 https://doi.org/10.1016/S0141-0229(00)00234-9
  23. Woo, S. H. and J. M. Park. 2004. Biodegradation of aromatic compounds from soil by drum bioreactor system. J. Microbiol. Biotechnol. 14: 435-441
  24. Young, L. and J. Yu. 1997. Ligninase-catalyzed decolorization of synthetic dyes. Water Res. 31: 1187-1193 https://doi.org/10.1016/S0043-1354(96)00380-6
  25. Zhang, F., J. S. Knapp, and K. N. Tapley. 1999. Decolourisation of cotton bleaching effluents with wood rotting fungus. Water Res. 33: 919-928 https://doi.org/10.1016/S0043-1354(98)00288-7