Electrochemically Active Bacteria (EAB) and Mediator-Less Microbial Fuel Cells

  • Chang In-Seop (Bioelectrochemistry Laboratory, Water Environment & Remediation Research Center, Korea Institute of Science and Technology, Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Moon Hyun-Soo (Bioelectrochemistry Laboratory, Water Environment & Remediation Research Center, Korea Institute of Science and Technology, Department of Biochemical Engineering, Yanbian University of Science and Technology) ;
  • Bretschger Orianna (Department of Earth Science, University of Southern California) ;
  • Jang Jae-Kyung (Water Environment & Remediation Research Center, Korea Institute of Science and Technology) ;
  • Park Ho-Il (Bioelectrochemistry Laboratory, Water Environment & Remediation Research Center, Korea Institute of Science and Technology) ;
  • Nealson Kenneth H. (Department of Earth Science, University of Southern California) ;
  • Kim Byung-Hong (Bioelectrochemistry Laboratory, Water Environment & Remediation Research Center, Korea Institute of Science and Technology)
  • Published : 2006.02.01

Abstract

Keywords

References

  1. Akiba, T., H. P. Bennetto, J. L. Stirling, and K. Tanaka. 1985. Electricity generation from alkalotrophic organisms. Biotechnol. Lett. 9: 11-616
  2. Allen, R. M. and H. P. Bennetto. 1993. Microbial fuel cell. Appl. Biochem. Biotechnol. 39/40: 24-40
  3. Allison, R., B. Haluk, and L. Zbigniew. 2005. Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ. Sci. Technol. 39: 4666-4671 https://doi.org/10.1021/es048386r
  4. Angenent, L. T., K, Karim, M. H. Al-Dahhan, B. A. Wrenn, and R. Domiguez-Espinosa. 2004. Production of bioenergy and biochemical from industrial and agricultural wastewater. Trend Biotechnol. 22: 477-485 https://doi.org/10.1016/j.tibtech.2004.07.001
  5. Bennetto, H. P., G. M. Delaney, J. R. Mason, H. D. Roller, J. L. Stirling, and C. F. Thurtson. 1985. The source of fuel cell: Efficient biomass conversion using a microbial catalyst. Biotechnol. Lett. 7: 699-704 https://doi.org/10.1007/BF01032279
  6. Bennetto, H. P., J. Box, G. M. Delaney, J. R. Mason, S. D. Roller, J. L. Stirling, and C. F. Thurston. 1987. Redox mediated electrochemistry of whole microorganisms; from fuel cell to biosensor, pp. 291-312. In A. P. F. Turner, I. Karube, and G. S. Wilson (eds.), Biosensors: Fundamental and Applications. Oxford University Press, Oxford, U.K
  7. Bond, D. R., D. E. Holmes, L. M. Tender, and D. R. Lovley. 2002. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295: 483-485 https://doi.org/10.1126/science.1066771
  8. Bond, D. R. and D. R. Lovley. 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69: 1548-1555 https://doi.org/10.1128/AEM.69.3.1548-1555.2003
  9. Bradley, P. M., F. H. Chapelle, and D. R. Lovley. 1998. Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene. Appl. Environ. Microbiol. 64: 3102-3105
  10. Bulter, J. E., F. Kaufmann, M. V. Coppi, C. Nunez, and D. R. Lovley. 2004. MacA, a diheme c-type chtochrome involved in Fe(III) reduction by Geobacter sulfurreducens. J. Bacteriol. 186: 4042-4045 https://doi.org/10.1128/JB.186.12.4042-4045.2004
  11. Chang, I. S., H. Moon, J. K. Jang, and B. H. Kim. 2005. Improvement of microbial fuel cell performance as a BOD sensor using respiratory inhibitors. Biosens. Bioelectron. 20: 1856-1859 https://doi.org/10.1016/j.bios.2004.06.003
  12. Chang, I. S., J. K. Jang, G. C. Gil, M. Kim, H. J. Kim, B. W. Cho, and B. H. Kim. 2004. Continuous determination of biochemical oxygen demand sensor using a microbial fuel cell type biosensor. Biosens. Bioelectron. 17: 607-613
  13. Chaudhuri, S. K. and D. R. Lovley. 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 21: 1229-1232 https://doi.org/10.1038/nbt867
  14. Chen, C. Y. and P. Yang. 2003. Performance of an air-breathing direct methanol fuel cell. J. Power Sources 123: 37-42 https://doi.org/10.1016/S0378-7753(03)00434-8
  15. Chen, P., M. A. Fryling, and R. L. McCreery. 1995. Electron transfer kinetics at modified carbon electrode surface: The role of specific surface sites. Anal. Chem. 67: 3115-3122 https://doi.org/10.1021/ac00114a004
  16. Cheng, S., H. Liu, and B. E. Logan. 2006. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (nafion and PTFE) in single chamber microbial fuel cells. Environ. Sci. Technol. 40: 364-369 https://doi.org/10.1021/es0512071
  17. Choi, Y., E. Jung, S. Kim, and S. Jung. 2003. Membrane fluidity sensoring microbial fuel cell. Bioelectrochem. 59: 121-127 https://doi.org/10.1016/S1567-5394(03)00018-5
  18. Choi, Y., J. Song, S. Jung, and S. Kim. 2001. Optimization of the performance of microbial fuel cells containing alkalophilic Bacillus sp. J. Microbiol. Biotechnol. 11: 863-869
  19. Choi, Y., N. Kim, S. Kim, and S. Jung. 2003. Dynamic behaviors of redox mediators within the hydrophobic layers as an important factor for effective microbial fuel cell operation. Bull. Korean Chem. Soc. 24: 437-440 https://doi.org/10.5012/bkcs.2003.24.4.437
  20. Choo, Y. F., J. Lee, I. S. Chang, and B. H. Kim. Submitted. Bacterial community in microbial fuel cell enriched with high concentration of glucose and glutamate
  21. Cuong, P. A., S. J. Jung, N. T. Phung, J. Lee, I. S. Chang, B. H. Kim, H, Yi, and J. Chun. 2003. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol. Lett. 223: 129-134 https://doi.org/10.1016/S0378-1097(03)00354-9
  22. Delaney, G. M., H. P. Bennetto, J. R. Mason, H. D. Roller, J. L. Stirling, and C. F. Thurtson. 1984. Electron-transfer coupling in microbial fuel cells: 2. Performance of fuel cells containing selected microorganism-mediator-substance combinations. J. Chem. Tech. Biotechnol. 34B: 13-27
  23. DuVall, S. H. and R. L. McCreey. 1999. Control of catechol and hydroquinone electron-transfer kinetics on native and modified glassy carbon electrodes. Anal. Chem. 71: 4594- 4602 https://doi.org/10.1021/ac990399d
  24. Gil, G. C., I. S. Chang, B. H. Kim, M. Kim, J. K. Jang, H. S. Park, and H. J. Kim. 2003. Operating parameters affecting the performance of a mediator-less microbial fuel cell. Biosens. Bioelectron. 18: 327-334 https://doi.org/10.1016/S0956-5663(02)00110-0
  25. Gregory, K. B., D. R. Bond, and D. R. Lovely. 2004. Graphite electrodes as electron donors for anaerobic respiration. Environ. Microbiol. 6: 596-604 https://doi.org/10.1111/j.1462-2920.2004.00593.x
  26. Grzebyk, M. and G.. PoYniak. 2005. Microbial fuel cells (MFCs) with interpolymer cation exchange membranes. Sep. Purif. Technol. 41: 321-328 https://doi.org/10.1016/j.seppur.2004.04.009
  27. Han, J. and E. S. Park. 2002. Direct methanol fuel-cell combined with a small back-up battery. J. Power Sources 112: 477-483 https://doi.org/10.1016/S0378-7753(02)00441-X
  28. Heidelberg, J. F., I. T. Paulsen, K. E. Nelson, E. J. Gaidos, W. C. Nelson, T. D. Read, J. A. Eisen, R. Seshadri, N. Ward, B. Methe, R. A. Clayton, T. Meyer, A. Tsapin, J. Scott, M. Beanan, L. Brinkac, S. Daugherty, R. T. DeBoy, R. J. Dodson, A. S. Durkin, D. H. Haft, J. F. Kolonay, R. Madupu, J. D. Peterson, L. A. Umayam, O. White, A. M. Wolf, J. Vamathevan, J. Weidman, M. Impraim, K. Lee, K. Berry, C. Lee, J. Mueller, H. Khouri, J. Gill, T. R. Utterback, L. A. McDonald, T. V. Feldblyum, H. O. Smith, J. C. Venter, K. H. Nealson, and C. M. Fraser. 2002. Genome sequence of the dissimilatory metal iron-reducing bacterium Shewanella onedensis. Nat. Biotechnol. 20: 1118-1123 https://doi.org/10.1038/nbt749
  29. Hernandeaz, M. E. and D. K. Newman. 2001. Review: Extracellular electron transfer. Cell Mol. Life Sci. 58: 1562- 1571 https://doi.org/10.1007/PL00000796
  30. Holmes, D. E., D. R. Bond, and D. R. Lovley. 2004. Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl. Environ. Microbiol. 70: 1234-1237 https://doi.org/10.1128/AEM.70.2.1234-1237.2004
  31. Hyun, M. S., H. J. Kim, and B. H. Kim. 1998. Use of a fuel cell to enrich electrochemically active Fe(III)-reducing bacteria, pp. 309-309. 98th General Meeting of American Society for Microbiology, Atlanta, U.S.A
  32. Jang, J. K., T. H., Pham, I. S. Chang, K. H. Kang, H. Moon, K. S. Cho, and B. H. Kim. 2004. Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochem. 39: 1007-1012 https://doi.org/10.1016/S0032-9592(03)00203-6
  33. Kang, K. H., J. K. Jang, J. Y. Lee, H. Moon, I. S. Chang, J. M. Kim, and B. H. Kim. 2004. A low BOD sensor using a microbial fuel cell. J. of KSEE 26: 58-63
  34. Kang, K. H., J. K. Jang, T. H. Pham, H. Moon, I. S. Chang, and B. H. Kim. 2003. A microbial fuel cell with improved cathode reaction as a low biological oxygen demand sensor. Biotechnol. Lett. 25: 1357-1361 https://doi.org/10.1023/A:1024984521699
  35. Karube, I., T. Matsunga, S. Mitsuda, and S. Suzuki. 1977. Microbial electrode BOD sensors. Biotechnol. Bioeng. 17: 153-157
  36. Katz, E., A. N. Shipway, and I. Willner. 2003. Biochemical fuel cells, pp. 1-27. In Vielstich W., H. A. Gasteiger, and A. Lamm (eds.), Handbook of Fuel Cells-fundamentals, Technology and Applications, John Wiley & Sons, Ltd., Sussex, U.K
  37. Kim, B. H., H. J. Kim, M. S. Hyun, and D. H. Park. 1999. Direct electrode reaction of Fe(III) reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9: 127- 131
  38. Kim, B. H., H. S. Park, H. J. Kim, G. T. Kim, I. S. Chang, J. Lee, and N. T. Phung. 2004. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl. Microbiol. Biotechnol. 63: 672-681 https://doi.org/10.1007/s00253-003-1412-6
  39. Kim, B. H, I. S. Chang, G. C. Gil, H. S. Park, and H. J. Kim. 2003. Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol. Lett. 25: 541- 545 https://doi.org/10.1023/A:1022891231369
  40. Kim B. H., I. S. Chang, and H. Moon (in press). Microbial fuel cell type biochemical oxygen demand sensor In Encyclopedia of Sensors, Grimes, C. A., E. C. Dickey, and M. V. Pishko (eds.), American Scientific Publishers, Valencia, U.S.A
  41. Kim, G. T., M. S. Hyun, I. S. Chang, H. J. Kim, H. S. Park, B. H. Kim, S. D. Kim, J. W. T. Wimpenny, and A. J. Weightman. 2005. Dissimilatory Fe(III) reduction by electrochemically active lactic acid bacterium phylogenetically related to Enterococcus gallinarum isolated from submerged soil. J. Appl. Microbiol. 99: 978-987 https://doi.org/10.1111/j.1365-2672.2004.02514.x
  42. Kim, H. J., H. S. Park, M. S. Hyun, I. S. Chang, M. Kim, and B. H. Kim. 2002. A mediator-less microbial fuel cell using a metal reducing bacterium Shewanella putrefaciens. Enzyme Microb. Technol. 30: 125-152 https://doi.org/10.1016/S0141-0229(01)00475-6
  43. Kim, H. J., M. S. Hyun, I. S. Chang, and B. H. Kim. 1999. A fuel cell type lactate biosensor using a metal reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9: 365-367
  44. Kim, J. R., B. Min, and B. E. Logan. 2005. Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl. Microbiol. Biotechnol. 68: 23-30 https://doi.org/10.1007/s00253-004-1845-6
  45. Kim, N., Y. Choi, S. Jung, and S. Kim. 2000. Effect of initial carbon sources on the performance of microbial fuel cells containing Proteus vulgaris. Biotechnol. Bioeng. 70: 109- 112 https://doi.org/10.1002/1097-0290(20001005)70:1<109::AID-BIT11>3.0.CO;2-M
  46. Leang, C., M. V. Coppi, and D. R. Lovley. 2003. OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens. J. Bacteriol. 185: 2096-2103 https://doi.org/10.1128/JB.185.7.2096-2103.2003
  47. Lee, J., N. T. Phung, I. S. Chang, B. H. Kim, and H. C. Sung. 2003. Use of acetate for enrichment of electrochemically active microbes and their 16S rDNA analyses. FEMS Microbiol. Lett. 223: 185-191 https://doi.org/10.1016/S0378-1097(03)00356-2
  48. Lee, S. A., Y. Choi, S. H. Jung, and S. Kim. 2005. Effect of initial carbon sources on the electrochemical detection of glucose by Gluconobacter oxidans. Bioelectrochem. 57: 193-198
  49. Liu, H. and B. E. Logan. 2004. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 38: 4040-4046 https://doi.org/10.1021/es0499344
  50. Liu, H., R. Ramnarayanan, and B. E. Logan. 2004. Production of electricity during wastewater using a single chamber microbial fuel cell. Environ. Sci. Technol. 38: 2281-2285 https://doi.org/10.1021/es034923g
  51. Liu, H., S. Grot, and B. E. Logan. 2005. Electrochemically assisted microbial production of hydrogen from acetate. Environ. Sci. Technol. 39: 4317-4320 https://doi.org/10.1021/es050244p
  52. Liu, H., S. A. Cheng, and B. E. Logan. 2005. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ. Sci. Technol. 39: 658-662 https://doi.org/10.1021/es048927c
  53. Liu, H., S. A. Cheng, and B. E. Logan. 2005. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ. Sci. Technol. 39: 5488-5493 https://doi.org/10.1021/es050316c
  54. Logan, B. E. 2004. Extracting hydrogen electricity from renewable resources. Environ. Sci. Technol. 38: 160A- 167A https://doi.org/10.1021/es040468s
  55. Logan, B. E., C. Murano, K. Scott, N. D. Gray, and I. M. Head. 2005. Electricity generation from cysteine in a microbial fuel cell. Water Res. 39: 942-952 https://doi.org/10.1016/j.watres.2004.11.019
  56. Lovley, D. R. and E. L. Blunt-Harris. 1999. Role of humic-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction. Appl. Environ. Microbiol. 65: 4252-4254
  57. Lovley, D. R., J. D. Coates, E. L. Blunt-Harris, E. J. P. Phillips, and J. C. Woodward. 1996. Humic substances as electron acceptors for microbial respiration. Nature, 382: 445-447 https://doi.org/10.1038/382445a0
  58. Mehta, T., M. V. Coppi, S. E. Childers, and D. R. Lovley. 2005. Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens. Appl. Environ. Microbiol. 71: 8634-8641 https://doi.org/10.1128/AEM.71.12.8634-8641.2005
  59. Methe, B. A., K. E. Nelson, J. A. Eisen, I. T. Paulsen, W. Nelson, J. F. Heidelberg. D. Wu, M. Wu, N. Ward, M. J. Beanan, R. J. Dodson, R. Madupu, L. M. Brinkac, S. C. Daugherty, R. T. DeBoy, A. S. Durkin, M. Gwinn, J. F. Kolonay, S. A. Sullivan, D. H. Haft, J. Selengut, T. M. Davidsen, N. Zafar, O. White, B. Tran, C, Romero, H. A. Forberger, J. Weidman, H. Khouri, T. V. Feldblyum, T. R. Utterback, S. E. Van Aken, D. R. Lovley, and C. M. Fraser. 2003. Genome of Geobacter sulfurrducens: Metal reduction in subsurface environments. Science 302: 1967-1969 https://doi.org/10.1126/science.1088727
  60. Meyer, T. E., A. I. Tsapin, I. Vandenberghe, L. de Smert, D. Fishman, K. H. Nealson, M. A. Cusanovich, and J. J. Van Beeumen. 2004. Identification of 42 possible cytochrome C genes in the Shewanella oneidensis genome and characterization of six soluble cytochromes. OMICS 8: 57- 557 https://doi.org/10.1089/153623104773547499
  61. Min, B. and B. E. Logan. 2004. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ. Sci. Technol. 38: 5809-5812 https://doi.org/10.1021/es0491026
  62. Min, B., J. Kim, S. Oh, J. M. Regan, and B. E. Logan. 2005. Electricity generation from swine wastewater using microbial fuel cells. Water Res. 39: 4961-4968 https://doi.org/10.1016/j.watres.2005.09.039
  63. Min, B., S. Cheng, and B. E. Logan. 2005. Electricity generation using membrane and salt bridge microbial fuel cell. Water Res. 39: 1675-1686 https://doi.org/10.1016/j.watres.2005.02.002
  64. Moon, H., I. S. Chang, and B. H. Kim. 2006. Continuous electricity production from wastewater using mediator-less microbial fuel cell. Bioresource Tech. 97: 621-627 https://doi.org/10.1016/j.biortech.2005.03.027
  65. Moon, H., I. S. Chang, J. K. Jang, and B. H. Kim. 2005. Residence time distribution in microbial fuel cell and its influence on COD removal with electricity production. Biochem. Eng. J. 27: 59-65 https://doi.org/10.1016/j.bej.2005.02.010
  66. Moon, H., I. S. Chang, K. H. Kang, J. K. Jang, and B. H. Kim. 2004. Improving dynamic response of a mediator-less microbial fuel cell as biochemical oxygen demand (BOD) sensor. Biotechnol. Lett. 26: 1917-1921
  67. Moon, H., I. S. Chang, J. K. Jang, K. S. Kim, J. Lee, R. W. Lovitt, and B. H. Kim. 2005. On-line monitoring of low biochemical oxygen demand through continuous operation of a mediator-less microbial fuel cell. J. Microbiol. Biotechnol. 15: 192-196
  68. Myers, C. R. and J. M. Myers. 1992. Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J. Bacteriol. 194: 3429- 3438
  69. Myers, C. R. and J. M. Myers. 1997. Outer membranes of cytochromes of Shewanella putrefaciens MR-1: Spectral analysis and purification of the 83-kDa c-type cytochrome. Biochim. Biophys Acta 1326: 307-318 https://doi.org/10.1016/S0005-2736(97)00034-5
  70. Myers, J. M. and C. R. Myers. 2001. Role of outer membrane cytochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in reduction of manganese dioxide. Appl. Environ. Microbiol. 67: 260-269 https://doi.org/10.1128/AEM.67.1.260-269.2001
  71. Newman, D. K. and R. Kolter. 2000. A role for excreted quinines in extracellular electron transfer. Nature 405: 94-97 https://doi.org/10.1038/35011098
  72. Oh, S. E. and B. E. Logan. In press. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl. Microbiol. Biotechnol
  73. Oh, S. E. and B. E. Logan. 2005. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res. 39: 4673-4682 https://doi.org/10.1016/j.watres.2005.09.019
  74. Oh, S. E., B. Min, and B. E. Logan. 2004. Cathode performance as a factor in electricity generation in microbial fuel cells. Environ. Sci. Technol. 38: 4900-4904 https://doi.org/10.1021/es049422p
  75. Park, D. H. and J. G. Zeikus. 2003. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng. 81: 348-355 https://doi.org/10.1002/bit.10501
  76. Park, H. I., D. K. Kim, Y. J. Choi, and D. W. Pak. 2005. Nitrate reduction using electrode as direct electron donor in biofilm-electrode reactor. Process Biochem. 40: 3383-3388 https://doi.org/10.1016/j.procbio.2005.03.017
  77. Park, H. S., B. H. Kim, H. S. Kim, H. J. Kim, G. T. Kim, M. Kim, I. S. Chang, Y. K. Park, and H. I. Chang. 2001. A novel electrochemically active and Fe(III) reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7: 297-306 https://doi.org/10.1006/anae.2001.0399
  78. Pham, T. H., J. K. Jang, H. Moon, I. S. Chang, and B. H. Kim. 2005. Improved performance of a microbial fuel cell using a membrane-electrode assembly. J. Microbiol. Biotechnol. 15: 438-441
  79. Pham, T. H., J. K. Jang, I. S. Chang, and B. H. Kim. 2004. Improvement of cathode reaction of a mediatorless microbial fuel cell. J. Microbiol. Biotechnol. 12: 324-329
  80. Phung, N. T., J. Lee, K. H. Kang, I. S. Chang, G. M. Gadd, and B. H. Kim. 2004. Analysis of microbial diversity in oligotrophic microbial fuel cell using 16S rDNA analyses. FEMS Microbiol. Lett. 233: 77-82 https://doi.org/10.1016/j.femsle.2004.01.041
  81. Rabaey, K., G. Lissens, S. D. Siciliano, and W. Verstraete. 2003 A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol. Lett. 25: 1531-1535 https://doi.org/10.1023/A:1025484009367
  82. Rabaey, K., N. Boon, S. D. Siciliano, M. Verhaege, and W. Verstraete. 2004. Biofuel cells select for microbial consortia that self-mediated electron transfer. Appl. Environ. Microbiol. 70: 1-10 https://doi.org/10.1128/AEM.70.1.1-7.2004
  83. Rabaey, K., P. Clauwaert, P. Aelterman, and W. Verstraete W. 2005. Tubular microbial fuel cells for efficient electricity generation. Environ. Sci. Technol. 39: 8077-8082 https://doi.org/10.1021/es050986i
  84. Rabaey, K. and W. Verstraete. 2005. Microbial fuel cells: Novel biotechnology for energy generation. Trends Biotechnol. 23: 291-298 https://doi.org/10.1016/j.tibtech.2005.04.008
  85. Reimers, C. E., L. M. Tender, S. Fertig, and W. Wang. 2001. Harvesting energy from the marine-sediment-water interface. Environ. Sci. Technol. 35: 192-195 https://doi.org/10.1021/es001223s
  86. Roller, H. D., H. P. Bennetto, G. M. Delaney, J. R. Mason, J. L. Stirling, and C. F. Thurtson. 1984. Electron-transfer coupling in microbial fuel cells: 1. Comparison of redox-mediator reduction rates and respiratory rates of bacteria. J. Chem. Tech. Biotechnol. 34B: 3-12
  87. Scholz, F. and U. Schroder. 2003. Bacterial batteries. Nat. Biotechnol. 21: 1151-1152 https://doi.org/10.1038/nbt1003-1151
  88. Schroder, U., J. Niessen, and F. Scholz, 2003. A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew. Chem. Int. Ed. Eng. 42: 2880-2883 https://doi.org/10.1002/anie.200350918
  89. Stoodley, P., K. Sauer, D. G. Davies, and J. W. Costerton. 2002. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56: 187-209 https://doi.org/10.1146/annurev.micro.56.012302.160705
  90. Striling, J. L., H. P. Bennetto, G. M. Delaney, J. R. Mason, H. D. Roller, K. Tanaka, and C. F. Thurtson. 1983. Microbial fuel cells. Biochem. Soc. Trans. 11: 451-453 https://doi.org/10.1042/bst0110451
  91. Tanisho, S., N. Kamiya, and N. Wakao. 1983. Microbial fuel cell using Enterobacter aerogens. Bioelectrochem. Bioenerg. 21: 25-32
  92. Tartakovsky, B. and S. R. Guiot. 2006. A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors. Biotechnol. Prog. 22: 241-246 https://doi.org/10.1021/bp050225j
  93. Tender, L. M., C. E. Reimers, H. A. Stecher, D. E. Holmes, D. R. Bond, D. L. Lowy, K. Pilobello, S. J. Fertig, and D. R. Lovley. 2002. Harnessing microbial power generation on the seafloor. Nat. Biotechnol. 20: 821-825 https://doi.org/10.1038/nbt716
  94. Thurston, C. F., H. P. Bennetto, G. M. Delaney, J. R. Mason, H. D. Roller, and J. L. Striling. 1985. Glucose metabolism in microbial fuel cell; stoichiometry of product formation a thionin-mediated Proteus vulgaris fuel cell and its relation to coulombic yields. J. Gen. Microbiol. 131: 1393-1201
  95. Vega, C. A. and I. Fernandez. 1987. Mediating effect of ferric chelate compounds in microbial fuel cells with Lactobacillus planetarium, Streprtococcus lactis and Erwina dissolvens. Vega, C. A. and I. Fernandez. 1987. Mediating effect of ferric chelate compounds in microbial fuel cells with Lactobacillus planetarium, Streprtococcus lactis and Erwina dissolvens. Bioelectrochem. Bioenerg. 17: 217-222 https://doi.org/10.1016/0302-4598(87)80026-0
  96. Wilkinson, S. 2000. 'Gastrobots:-Benefits and challenges of microbial fuel cells in food powered robot applications. Auton. Robot. 9: 99-111 https://doi.org/10.1023/A:1008984516499
  97. Zhang, X. and A. Halme. 1995. Modelling of a microbial fuel cell process. Biotechnol. Lett. 17: 809-812 https://doi.org/10.1007/BF00129009