References
- Akiba, T., H. P. Bennetto, J. L. Stirling, and K. Tanaka. 1985. Electricity generation from alkalotrophic organisms. Biotechnol. Lett. 9: 11-616
- Allen, R. M. and H. P. Bennetto. 1993. Microbial fuel cell. Appl. Biochem. Biotechnol. 39/40: 24-40
- Allison, R., B. Haluk, and L. Zbigniew. 2005. Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ. Sci. Technol. 39: 4666-4671 https://doi.org/10.1021/es048386r
- Angenent, L. T., K, Karim, M. H. Al-Dahhan, B. A. Wrenn, and R. Domiguez-Espinosa. 2004. Production of bioenergy and biochemical from industrial and agricultural wastewater. Trend Biotechnol. 22: 477-485 https://doi.org/10.1016/j.tibtech.2004.07.001
- Bennetto, H. P., G. M. Delaney, J. R. Mason, H. D. Roller, J. L. Stirling, and C. F. Thurtson. 1985. The source of fuel cell: Efficient biomass conversion using a microbial catalyst. Biotechnol. Lett. 7: 699-704 https://doi.org/10.1007/BF01032279
- Bennetto, H. P., J. Box, G. M. Delaney, J. R. Mason, S. D. Roller, J. L. Stirling, and C. F. Thurston. 1987. Redox mediated electrochemistry of whole microorganisms; from fuel cell to biosensor, pp. 291-312. In A. P. F. Turner, I. Karube, and G. S. Wilson (eds.), Biosensors: Fundamental and Applications. Oxford University Press, Oxford, U.K
- Bond, D. R., D. E. Holmes, L. M. Tender, and D. R. Lovley. 2002. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295: 483-485 https://doi.org/10.1126/science.1066771
- Bond, D. R. and D. R. Lovley. 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69: 1548-1555 https://doi.org/10.1128/AEM.69.3.1548-1555.2003
- Bradley, P. M., F. H. Chapelle, and D. R. Lovley. 1998. Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene. Appl. Environ. Microbiol. 64: 3102-3105
- Bulter, J. E., F. Kaufmann, M. V. Coppi, C. Nunez, and D. R. Lovley. 2004. MacA, a diheme c-type chtochrome involved in Fe(III) reduction by Geobacter sulfurreducens. J. Bacteriol. 186: 4042-4045 https://doi.org/10.1128/JB.186.12.4042-4045.2004
- Chang, I. S., H. Moon, J. K. Jang, and B. H. Kim. 2005. Improvement of microbial fuel cell performance as a BOD sensor using respiratory inhibitors. Biosens. Bioelectron. 20: 1856-1859 https://doi.org/10.1016/j.bios.2004.06.003
- Chang, I. S., J. K. Jang, G. C. Gil, M. Kim, H. J. Kim, B. W. Cho, and B. H. Kim. 2004. Continuous determination of biochemical oxygen demand sensor using a microbial fuel cell type biosensor. Biosens. Bioelectron. 17: 607-613
- Chaudhuri, S. K. and D. R. Lovley. 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 21: 1229-1232 https://doi.org/10.1038/nbt867
- Chen, C. Y. and P. Yang. 2003. Performance of an air-breathing direct methanol fuel cell. J. Power Sources 123: 37-42 https://doi.org/10.1016/S0378-7753(03)00434-8
- Chen, P., M. A. Fryling, and R. L. McCreery. 1995. Electron transfer kinetics at modified carbon electrode surface: The role of specific surface sites. Anal. Chem. 67: 3115-3122 https://doi.org/10.1021/ac00114a004
- Cheng, S., H. Liu, and B. E. Logan. 2006. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (nafion and PTFE) in single chamber microbial fuel cells. Environ. Sci. Technol. 40: 364-369 https://doi.org/10.1021/es0512071
- Choi, Y., E. Jung, S. Kim, and S. Jung. 2003. Membrane fluidity sensoring microbial fuel cell. Bioelectrochem. 59: 121-127 https://doi.org/10.1016/S1567-5394(03)00018-5
- Choi, Y., J. Song, S. Jung, and S. Kim. 2001. Optimization of the performance of microbial fuel cells containing alkalophilic Bacillus sp. J. Microbiol. Biotechnol. 11: 863-869
- Choi, Y., N. Kim, S. Kim, and S. Jung. 2003. Dynamic behaviors of redox mediators within the hydrophobic layers as an important factor for effective microbial fuel cell operation. Bull. Korean Chem. Soc. 24: 437-440 https://doi.org/10.5012/bkcs.2003.24.4.437
- Choo, Y. F., J. Lee, I. S. Chang, and B. H. Kim. Submitted. Bacterial community in microbial fuel cell enriched with high concentration of glucose and glutamate
- Cuong, P. A., S. J. Jung, N. T. Phung, J. Lee, I. S. Chang, B. H. Kim, H, Yi, and J. Chun. 2003. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol. Lett. 223: 129-134 https://doi.org/10.1016/S0378-1097(03)00354-9
- Delaney, G. M., H. P. Bennetto, J. R. Mason, H. D. Roller, J. L. Stirling, and C. F. Thurtson. 1984. Electron-transfer coupling in microbial fuel cells: 2. Performance of fuel cells containing selected microorganism-mediator-substance combinations. J. Chem. Tech. Biotechnol. 34B: 13-27
- DuVall, S. H. and R. L. McCreey. 1999. Control of catechol and hydroquinone electron-transfer kinetics on native and modified glassy carbon electrodes. Anal. Chem. 71: 4594- 4602 https://doi.org/10.1021/ac990399d
- Gil, G. C., I. S. Chang, B. H. Kim, M. Kim, J. K. Jang, H. S. Park, and H. J. Kim. 2003. Operating parameters affecting the performance of a mediator-less microbial fuel cell. Biosens. Bioelectron. 18: 327-334 https://doi.org/10.1016/S0956-5663(02)00110-0
- Gregory, K. B., D. R. Bond, and D. R. Lovely. 2004. Graphite electrodes as electron donors for anaerobic respiration. Environ. Microbiol. 6: 596-604 https://doi.org/10.1111/j.1462-2920.2004.00593.x
- Grzebyk, M. and G.. PoYniak. 2005. Microbial fuel cells (MFCs) with interpolymer cation exchange membranes. Sep. Purif. Technol. 41: 321-328 https://doi.org/10.1016/j.seppur.2004.04.009
- Han, J. and E. S. Park. 2002. Direct methanol fuel-cell combined with a small back-up battery. J. Power Sources 112: 477-483 https://doi.org/10.1016/S0378-7753(02)00441-X
- Heidelberg, J. F., I. T. Paulsen, K. E. Nelson, E. J. Gaidos, W. C. Nelson, T. D. Read, J. A. Eisen, R. Seshadri, N. Ward, B. Methe, R. A. Clayton, T. Meyer, A. Tsapin, J. Scott, M. Beanan, L. Brinkac, S. Daugherty, R. T. DeBoy, R. J. Dodson, A. S. Durkin, D. H. Haft, J. F. Kolonay, R. Madupu, J. D. Peterson, L. A. Umayam, O. White, A. M. Wolf, J. Vamathevan, J. Weidman, M. Impraim, K. Lee, K. Berry, C. Lee, J. Mueller, H. Khouri, J. Gill, T. R. Utterback, L. A. McDonald, T. V. Feldblyum, H. O. Smith, J. C. Venter, K. H. Nealson, and C. M. Fraser. 2002. Genome sequence of the dissimilatory metal iron-reducing bacterium Shewanella onedensis. Nat. Biotechnol. 20: 1118-1123 https://doi.org/10.1038/nbt749
- Hernandeaz, M. E. and D. K. Newman. 2001. Review: Extracellular electron transfer. Cell Mol. Life Sci. 58: 1562- 1571 https://doi.org/10.1007/PL00000796
- Holmes, D. E., D. R. Bond, and D. R. Lovley. 2004. Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl. Environ. Microbiol. 70: 1234-1237 https://doi.org/10.1128/AEM.70.2.1234-1237.2004
- Hyun, M. S., H. J. Kim, and B. H. Kim. 1998. Use of a fuel cell to enrich electrochemically active Fe(III)-reducing bacteria, pp. 309-309. 98th General Meeting of American Society for Microbiology, Atlanta, U.S.A
- Jang, J. K., T. H., Pham, I. S. Chang, K. H. Kang, H. Moon, K. S. Cho, and B. H. Kim. 2004. Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochem. 39: 1007-1012 https://doi.org/10.1016/S0032-9592(03)00203-6
- Kang, K. H., J. K. Jang, J. Y. Lee, H. Moon, I. S. Chang, J. M. Kim, and B. H. Kim. 2004. A low BOD sensor using a microbial fuel cell. J. of KSEE 26: 58-63
- Kang, K. H., J. K. Jang, T. H. Pham, H. Moon, I. S. Chang, and B. H. Kim. 2003. A microbial fuel cell with improved cathode reaction as a low biological oxygen demand sensor. Biotechnol. Lett. 25: 1357-1361 https://doi.org/10.1023/A:1024984521699
- Karube, I., T. Matsunga, S. Mitsuda, and S. Suzuki. 1977. Microbial electrode BOD sensors. Biotechnol. Bioeng. 17: 153-157
- Katz, E., A. N. Shipway, and I. Willner. 2003. Biochemical fuel cells, pp. 1-27. In Vielstich W., H. A. Gasteiger, and A. Lamm (eds.), Handbook of Fuel Cells-fundamentals, Technology and Applications, John Wiley & Sons, Ltd., Sussex, U.K
- Kim, B. H., H. J. Kim, M. S. Hyun, and D. H. Park. 1999. Direct electrode reaction of Fe(III) reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9: 127- 131
- Kim, B. H., H. S. Park, H. J. Kim, G. T. Kim, I. S. Chang, J. Lee, and N. T. Phung. 2004. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl. Microbiol. Biotechnol. 63: 672-681 https://doi.org/10.1007/s00253-003-1412-6
- Kim, B. H, I. S. Chang, G. C. Gil, H. S. Park, and H. J. Kim. 2003. Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol. Lett. 25: 541- 545 https://doi.org/10.1023/A:1022891231369
- Kim B. H., I. S. Chang, and H. Moon (in press). Microbial fuel cell type biochemical oxygen demand sensor In Encyclopedia of Sensors, Grimes, C. A., E. C. Dickey, and M. V. Pishko (eds.), American Scientific Publishers, Valencia, U.S.A
- Kim, G. T., M. S. Hyun, I. S. Chang, H. J. Kim, H. S. Park, B. H. Kim, S. D. Kim, J. W. T. Wimpenny, and A. J. Weightman. 2005. Dissimilatory Fe(III) reduction by electrochemically active lactic acid bacterium phylogenetically related to Enterococcus gallinarum isolated from submerged soil. J. Appl. Microbiol. 99: 978-987 https://doi.org/10.1111/j.1365-2672.2004.02514.x
- Kim, H. J., H. S. Park, M. S. Hyun, I. S. Chang, M. Kim, and B. H. Kim. 2002. A mediator-less microbial fuel cell using a metal reducing bacterium Shewanella putrefaciens. Enzyme Microb. Technol. 30: 125-152 https://doi.org/10.1016/S0141-0229(01)00475-6
- Kim, H. J., M. S. Hyun, I. S. Chang, and B. H. Kim. 1999. A fuel cell type lactate biosensor using a metal reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9: 365-367
- Kim, J. R., B. Min, and B. E. Logan. 2005. Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl. Microbiol. Biotechnol. 68: 23-30 https://doi.org/10.1007/s00253-004-1845-6
- Kim, N., Y. Choi, S. Jung, and S. Kim. 2000. Effect of initial carbon sources on the performance of microbial fuel cells containing Proteus vulgaris. Biotechnol. Bioeng. 70: 109- 112 https://doi.org/10.1002/1097-0290(20001005)70:1<109::AID-BIT11>3.0.CO;2-M
- Leang, C., M. V. Coppi, and D. R. Lovley. 2003. OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens. J. Bacteriol. 185: 2096-2103 https://doi.org/10.1128/JB.185.7.2096-2103.2003
- Lee, J., N. T. Phung, I. S. Chang, B. H. Kim, and H. C. Sung. 2003. Use of acetate for enrichment of electrochemically active microbes and their 16S rDNA analyses. FEMS Microbiol. Lett. 223: 185-191 https://doi.org/10.1016/S0378-1097(03)00356-2
- Lee, S. A., Y. Choi, S. H. Jung, and S. Kim. 2005. Effect of initial carbon sources on the electrochemical detection of glucose by Gluconobacter oxidans. Bioelectrochem. 57: 193-198
- Liu, H. and B. E. Logan. 2004. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 38: 4040-4046 https://doi.org/10.1021/es0499344
- Liu, H., R. Ramnarayanan, and B. E. Logan. 2004. Production of electricity during wastewater using a single chamber microbial fuel cell. Environ. Sci. Technol. 38: 2281-2285 https://doi.org/10.1021/es034923g
- Liu, H., S. Grot, and B. E. Logan. 2005. Electrochemically assisted microbial production of hydrogen from acetate. Environ. Sci. Technol. 39: 4317-4320 https://doi.org/10.1021/es050244p
- Liu, H., S. A. Cheng, and B. E. Logan. 2005. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ. Sci. Technol. 39: 658-662 https://doi.org/10.1021/es048927c
- Liu, H., S. A. Cheng, and B. E. Logan. 2005. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ. Sci. Technol. 39: 5488-5493 https://doi.org/10.1021/es050316c
- Logan, B. E. 2004. Extracting hydrogen electricity from renewable resources. Environ. Sci. Technol. 38: 160A- 167A https://doi.org/10.1021/es040468s
- Logan, B. E., C. Murano, K. Scott, N. D. Gray, and I. M. Head. 2005. Electricity generation from cysteine in a microbial fuel cell. Water Res. 39: 942-952 https://doi.org/10.1016/j.watres.2004.11.019
- Lovley, D. R. and E. L. Blunt-Harris. 1999. Role of humic-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction. Appl. Environ. Microbiol. 65: 4252-4254
- Lovley, D. R., J. D. Coates, E. L. Blunt-Harris, E. J. P. Phillips, and J. C. Woodward. 1996. Humic substances as electron acceptors for microbial respiration. Nature, 382: 445-447 https://doi.org/10.1038/382445a0
- Mehta, T., M. V. Coppi, S. E. Childers, and D. R. Lovley. 2005. Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens. Appl. Environ. Microbiol. 71: 8634-8641 https://doi.org/10.1128/AEM.71.12.8634-8641.2005
- Methe, B. A., K. E. Nelson, J. A. Eisen, I. T. Paulsen, W. Nelson, J. F. Heidelberg. D. Wu, M. Wu, N. Ward, M. J. Beanan, R. J. Dodson, R. Madupu, L. M. Brinkac, S. C. Daugherty, R. T. DeBoy, A. S. Durkin, M. Gwinn, J. F. Kolonay, S. A. Sullivan, D. H. Haft, J. Selengut, T. M. Davidsen, N. Zafar, O. White, B. Tran, C, Romero, H. A. Forberger, J. Weidman, H. Khouri, T. V. Feldblyum, T. R. Utterback, S. E. Van Aken, D. R. Lovley, and C. M. Fraser. 2003. Genome of Geobacter sulfurrducens: Metal reduction in subsurface environments. Science 302: 1967-1969 https://doi.org/10.1126/science.1088727
- Meyer, T. E., A. I. Tsapin, I. Vandenberghe, L. de Smert, D. Fishman, K. H. Nealson, M. A. Cusanovich, and J. J. Van Beeumen. 2004. Identification of 42 possible cytochrome C genes in the Shewanella oneidensis genome and characterization of six soluble cytochromes. OMICS 8: 57- 557 https://doi.org/10.1089/153623104773547499
- Min, B. and B. E. Logan. 2004. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ. Sci. Technol. 38: 5809-5812 https://doi.org/10.1021/es0491026
- Min, B., J. Kim, S. Oh, J. M. Regan, and B. E. Logan. 2005. Electricity generation from swine wastewater using microbial fuel cells. Water Res. 39: 4961-4968 https://doi.org/10.1016/j.watres.2005.09.039
- Min, B., S. Cheng, and B. E. Logan. 2005. Electricity generation using membrane and salt bridge microbial fuel cell. Water Res. 39: 1675-1686 https://doi.org/10.1016/j.watres.2005.02.002
- Moon, H., I. S. Chang, and B. H. Kim. 2006. Continuous electricity production from wastewater using mediator-less microbial fuel cell. Bioresource Tech. 97: 621-627 https://doi.org/10.1016/j.biortech.2005.03.027
- Moon, H., I. S. Chang, J. K. Jang, and B. H. Kim. 2005. Residence time distribution in microbial fuel cell and its influence on COD removal with electricity production. Biochem. Eng. J. 27: 59-65 https://doi.org/10.1016/j.bej.2005.02.010
- Moon, H., I. S. Chang, K. H. Kang, J. K. Jang, and B. H. Kim. 2004. Improving dynamic response of a mediator-less microbial fuel cell as biochemical oxygen demand (BOD) sensor. Biotechnol. Lett. 26: 1917-1921
- Moon, H., I. S. Chang, J. K. Jang, K. S. Kim, J. Lee, R. W. Lovitt, and B. H. Kim. 2005. On-line monitoring of low biochemical oxygen demand through continuous operation of a mediator-less microbial fuel cell. J. Microbiol. Biotechnol. 15: 192-196
- Myers, C. R. and J. M. Myers. 1992. Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J. Bacteriol. 194: 3429- 3438
- Myers, C. R. and J. M. Myers. 1997. Outer membranes of cytochromes of Shewanella putrefaciens MR-1: Spectral analysis and purification of the 83-kDa c-type cytochrome. Biochim. Biophys Acta 1326: 307-318 https://doi.org/10.1016/S0005-2736(97)00034-5
- Myers, J. M. and C. R. Myers. 2001. Role of outer membrane cytochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in reduction of manganese dioxide. Appl. Environ. Microbiol. 67: 260-269 https://doi.org/10.1128/AEM.67.1.260-269.2001
- Newman, D. K. and R. Kolter. 2000. A role for excreted quinines in extracellular electron transfer. Nature 405: 94-97 https://doi.org/10.1038/35011098
- Oh, S. E. and B. E. Logan. In press. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl. Microbiol. Biotechnol
- Oh, S. E. and B. E. Logan. 2005. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res. 39: 4673-4682 https://doi.org/10.1016/j.watres.2005.09.019
- Oh, S. E., B. Min, and B. E. Logan. 2004. Cathode performance as a factor in electricity generation in microbial fuel cells. Environ. Sci. Technol. 38: 4900-4904 https://doi.org/10.1021/es049422p
- Park, D. H. and J. G. Zeikus. 2003. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng. 81: 348-355 https://doi.org/10.1002/bit.10501
- Park, H. I., D. K. Kim, Y. J. Choi, and D. W. Pak. 2005. Nitrate reduction using electrode as direct electron donor in biofilm-electrode reactor. Process Biochem. 40: 3383-3388 https://doi.org/10.1016/j.procbio.2005.03.017
- Park, H. S., B. H. Kim, H. S. Kim, H. J. Kim, G. T. Kim, M. Kim, I. S. Chang, Y. K. Park, and H. I. Chang. 2001. A novel electrochemically active and Fe(III) reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7: 297-306 https://doi.org/10.1006/anae.2001.0399
- Pham, T. H., J. K. Jang, H. Moon, I. S. Chang, and B. H. Kim. 2005. Improved performance of a microbial fuel cell using a membrane-electrode assembly. J. Microbiol. Biotechnol. 15: 438-441
- Pham, T. H., J. K. Jang, I. S. Chang, and B. H. Kim. 2004. Improvement of cathode reaction of a mediatorless microbial fuel cell. J. Microbiol. Biotechnol. 12: 324-329
- Phung, N. T., J. Lee, K. H. Kang, I. S. Chang, G. M. Gadd, and B. H. Kim. 2004. Analysis of microbial diversity in oligotrophic microbial fuel cell using 16S rDNA analyses. FEMS Microbiol. Lett. 233: 77-82 https://doi.org/10.1016/j.femsle.2004.01.041
- Rabaey, K., G. Lissens, S. D. Siciliano, and W. Verstraete. 2003 A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol. Lett. 25: 1531-1535 https://doi.org/10.1023/A:1025484009367
- Rabaey, K., N. Boon, S. D. Siciliano, M. Verhaege, and W. Verstraete. 2004. Biofuel cells select for microbial consortia that self-mediated electron transfer. Appl. Environ. Microbiol. 70: 1-10 https://doi.org/10.1128/AEM.70.1.1-7.2004
- Rabaey, K., P. Clauwaert, P. Aelterman, and W. Verstraete W. 2005. Tubular microbial fuel cells for efficient electricity generation. Environ. Sci. Technol. 39: 8077-8082 https://doi.org/10.1021/es050986i
- Rabaey, K. and W. Verstraete. 2005. Microbial fuel cells: Novel biotechnology for energy generation. Trends Biotechnol. 23: 291-298 https://doi.org/10.1016/j.tibtech.2005.04.008
- Reimers, C. E., L. M. Tender, S. Fertig, and W. Wang. 2001. Harvesting energy from the marine-sediment-water interface. Environ. Sci. Technol. 35: 192-195 https://doi.org/10.1021/es001223s
- Roller, H. D., H. P. Bennetto, G. M. Delaney, J. R. Mason, J. L. Stirling, and C. F. Thurtson. 1984. Electron-transfer coupling in microbial fuel cells: 1. Comparison of redox-mediator reduction rates and respiratory rates of bacteria. J. Chem. Tech. Biotechnol. 34B: 3-12
- Scholz, F. and U. Schroder. 2003. Bacterial batteries. Nat. Biotechnol. 21: 1151-1152 https://doi.org/10.1038/nbt1003-1151
- Schroder, U., J. Niessen, and F. Scholz, 2003. A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew. Chem. Int. Ed. Eng. 42: 2880-2883 https://doi.org/10.1002/anie.200350918
- Stoodley, P., K. Sauer, D. G. Davies, and J. W. Costerton. 2002. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56: 187-209 https://doi.org/10.1146/annurev.micro.56.012302.160705
- Striling, J. L., H. P. Bennetto, G. M. Delaney, J. R. Mason, H. D. Roller, K. Tanaka, and C. F. Thurtson. 1983. Microbial fuel cells. Biochem. Soc. Trans. 11: 451-453 https://doi.org/10.1042/bst0110451
- Tanisho, S., N. Kamiya, and N. Wakao. 1983. Microbial fuel cell using Enterobacter aerogens. Bioelectrochem. Bioenerg. 21: 25-32
- Tartakovsky, B. and S. R. Guiot. 2006. A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors. Biotechnol. Prog. 22: 241-246 https://doi.org/10.1021/bp050225j
- Tender, L. M., C. E. Reimers, H. A. Stecher, D. E. Holmes, D. R. Bond, D. L. Lowy, K. Pilobello, S. J. Fertig, and D. R. Lovley. 2002. Harnessing microbial power generation on the seafloor. Nat. Biotechnol. 20: 821-825 https://doi.org/10.1038/nbt716
- Thurston, C. F., H. P. Bennetto, G. M. Delaney, J. R. Mason, H. D. Roller, and J. L. Striling. 1985. Glucose metabolism in microbial fuel cell; stoichiometry of product formation a thionin-mediated Proteus vulgaris fuel cell and its relation to coulombic yields. J. Gen. Microbiol. 131: 1393-1201
- Vega, C. A. and I. Fernandez. 1987. Mediating effect of ferric chelate compounds in microbial fuel cells with Lactobacillus planetarium, Streprtococcus lactis and Erwina dissolvens. Vega, C. A. and I. Fernandez. 1987. Mediating effect of ferric chelate compounds in microbial fuel cells with Lactobacillus planetarium, Streprtococcus lactis and Erwina dissolvens. Bioelectrochem. Bioenerg. 17: 217-222 https://doi.org/10.1016/0302-4598(87)80026-0
- Wilkinson, S. 2000. 'Gastrobots:-Benefits and challenges of microbial fuel cells in food powered robot applications. Auton. Robot. 9: 99-111 https://doi.org/10.1023/A:1008984516499
- Zhang, X. and A. Halme. 1995. Modelling of a microbial fuel cell process. Biotechnol. Lett. 17: 809-812 https://doi.org/10.1007/BF00129009