DOI QR코드

DOI QR Code

섭동 추정 프로세스를 이용한 불확실 시스템에 대한 강인 칼만 필터링 기법

Robust Kalman Filtering with Perturbation Estimation Process-for Uncertain Systems

  • 권상주 (한국항공대학교 항공우주 및 기계공학부)
  • 발행 : 2006.03.01

초록

A robust Kalman filtering method for uncertain stochastic systems is suggested by adopting a perturbation estimation process which is to reconstruct total uncertainty with respect to the nominal state transition equation. The predictor and corrector of discrete Kalman filter are reformulated with the perturbation estimator. Successively, the state and perturbation estimation error dynamics and the corresponding error covariance propagation equations are derived as well. Finally we have the recursive algorithm of Combined Kalman Filter-Perturbation Estimator (CKF). The proposed combined Kalman filter-perturbation estimator has the property of integrating innovations and the adaptation capability to system uncertainties. A numerical example is shown to demonstrate the effectiveness of the proposed scheme.

키워드

참고문헌

  1. F. L. Lewis, Applied Optimal Control and Estimation, Prentice-Hall, 1992
  2. M. S. Grewal and A. P. Andrews, Kalman Filtering: Theory and Practice, Prentice-Hall, 1993
  3. U. Shaked and C. E. de Souza, 'Robust minimum variance filtering,' IEEE Trans. on Signal Processing, vol. 43, no. 11, pp. 2474-2483, Nov. 1995 https://doi.org/10.1109/78.482099
  4. I. R. Petersen and D. C. McFarlane, 'Optimal guaranteed cost control and filtering for uncertain linear systems,' IEEE Trans. on Automatic Control, vol. 39, no. 9, pp. 1971-1977, Sep., 1994 https://doi.org/10.1109/9.317138
  5. M. Fu, C. E. de Souza, and Z.-Q. Luo, 'Finite-horizon robust kalman filter design,' IEEE Trans. on Signal Processing, vol. 49, no. 9, pp. 2103-2111, Sep. 2001 https://doi.org/10.1109/78.942638
  6. U. Shaked, L. Xie, and Y. C. Soh, 'New approaches to robust minimum variance filter design,' IEEE Trans. on Signal Processing, vol. 49, no. 11, pp. 2620-2629, Nov. 2001 https://doi.org/10.1109/78.960408
  7. F. Yang, Z. Wang, and Y. S. Hung, 'Robust kalman filtering for discrete time-varying uncertain systems with multiplicative noises,' IEEE Trans. on Automatic Control, vol. 47, no. 7, pp. 1179-1183, Jul. 2002 https://doi.org/10.1109/TAC.2002.800668
  8. F. Wang and V. Balakrishnan, 'Robust kalman filters for linear time-varying systems with stochastic parametric uncertainties,' IEEE Trans. on Signal Processing, vol. 50, no. 4, pp. 803-813, Apr. 2002 https://doi.org/10.1109/78.992124
  9. M. S. Mahmoud and P. Shi, 'Robust kalman filtering for continuous time-lag systems with markovian jump parameters,' IEEE Trans. On Circuits and Systems. I: Fundamental Theory and Applications, vol. 50, no. 1, pp. 98-105, Jan. 2003 https://doi.org/10.1109/TCSI.2002.807504
  10. C.-C. Tsui., 'A new design approach to unknown input observers,' IEEE Trans. on Automatic Control, vol. 41, no. 3, pp 464-468, Mar. 1996 https://doi.org/10.1109/9.486653
  11. M. Hou, A. C. Pugh, and P. C. Muller, 'Disturbance decoupled functional observers,' IEEE Trans. on Automatic Control, vol. 44, no. 2, pp. 382-386, Feb. 1999 https://doi.org/10.1109/9.746272
  12. D. W. Gu and F. W. Poon, 'A robust state observer scheme,' IEEE Trans. on Automatic Control, vol. 46, no. 12, pp. 1958-1963, Dec. 2001 https://doi.org/10.1109/9.975500
  13. S. J. Kwon and W. K. Chung, 'A discrete-time design and analysis of perturbation observer for motion control applications,' IEEE Trans. on Control Systems Tech., vol. 11, no. 3, pp. 399-407, May 2003 https://doi.org/10.1109/TCST.2003.810398
  14. S. J. Kwon and W. K. Chung, 'Combined synthesis of state estimator and perturbation observer,' ASME J. Dyn. Syst., Meas. and Contr., vol. 125, pp. 19-26, Mar. 2003 https://doi.org/10.1115/1.1540112
  15. 권상주, '섭동관측기를 연합한 강인 상태추정기 설계 및 해석,' 제어.자동화.시스템공학 논문지 제11권, 제6호 2005.6 https://doi.org/10.5302/J.ICROS.2005.11.6.477
  16. R. Siegwart and I. R. Nourbakhsh, Introduction to Autonomous Mobile Robot, The MIT Press, 2004

피인용 문헌

  1. Kalman Predictive Redundancy System for Fault Tolerance of Safety-Critical Systems vol.6, pp.1, 2010, https://doi.org/10.1109/TII.2009.2020566