Analysis of the ITS (Internal Transcribed Spacer) Region of Opuntia ficus-indica

백년초선인장의 ITS(internal transcribed spacer) 유전자 분석

  • 인준교 ((주)바이오피아 생명공학연구소) ;
  • 이범수 ((주)바이오피아 생명공학연구소) ;
  • 김은정 ((주)바이오피아 생명공학연구소) ;
  • 최관삼 (충남대학교 응용생물학과) ;
  • 한승호 (충남농업기술원) ;
  • 신철우 (충남농업기술원) ;
  • 양덕춘 (경희대학교 한방재료가공학과)
  • Published : 2006.02.01

Abstract

To investigate the origin of backyeoncho (Opuntia ficus-indica var. saboten), we isolated 685 bp clone using ITS primer pairs. The rDNA consists of the genes coding for the partial 54 bp 185, 162 bp 5.8S, and partial 56 bp 26S. The coding regions are interrupted by two internal transcribed spacers, 193 bp ITS1 and 220 bp ITS2. The ITS2 of backnyeoncho in length was shorter than that previously registered in Cucurbitoideae plants. The GC contents was 66.8% in ITS1, and 67.7% in ITS2. The rDNA of backnyeoncho matched to the previously reported genes and showed a high similarity with the 95% identity with Pereskiopsis porteri (L708037). In the phylogenetic analysis, the backnyeoncho rDNA was clustered with Pereskiopsis porteri (L708037).

제주도에 자생하는 부채 선인장인 백년초의 기원 규명을 목적으로 ITS primer를 이용하여 685 bp의 ITS 영역을 분리하였다. ITS 영역의 염기서열을 분석한 결과 18S rRNA의 길이는 54 bp, 26S rRNA는 55 bp, ITS1은 193 bp, ITS2는 220 bp로 구성되어 있었다. 백년초 ITS 영역은 기존에 보고된 Cucurbitoideae 식물들의 ITS 영역에 비하여 ITS2 스페이서 영역의 239-254 bp보다는 다소 짧았다. 그러나 이들 스페이서 영역의 GC 함량은 백년초의 경우 ITS1은 66.8%, ITS2의 경우에는 67.7%로 Cucurbitoideae 식물들에서 보다 높은 GC 함량을 나타내었다. 백년초 선인장의 rDNA 영역에 가장 높은 상동성을 나타낸 것은 같은 Opuntioideae에 속하는 Pereskiopsis porteri(L78037)로 95%의 유사도를 나타내었다. 백년초 rDNA Clustal W 프로그램을 이용하여 유연관계를 조사한 결과 같은 Opuntioideae에 속하는 Pereskiopsis porteri(L78037)와 같은 cluster로 분리되었다.

Keywords

References

  1. Ahn, D.K. 1998. Illustrated book of Korean Medicinal herbs. Kyohaksa. pp. 497
  2. Altschul, S.F., W. Gish, W. Miller, E.W. Myers and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410 https://doi.org/10.1016/S0022-2836(05)80360-2
  3. Baldwin, B.G. 1992. Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: An example from the Compositae. Mol. Phylogenet. Evol. 1: 3-16 https://doi.org/10.1016/1055-7903(92)90030-K
  4. Baldwin, B.G., M.J. Sanderson, J.M. Porter, M.F. Wojciechowski, C.S. Campbell and M.J. Donoghue. 1995. The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny. Ann. Missouri Bot. Gard. 82: 247-277 https://doi.org/10.2307/2399880
  5. Brown, D.D., P.C. Wensink and E. Jordan. 1972. Comparison of the ribosomal DNA's of Xenopus laevis and Xenopus mulleri: The evolution of tandem genes. J. Mol. Biol. 63: 57-73 https://doi.org/10.1016/0022-2836(72)90521-9
  6. Catalan, P., E.A. Kellogg and R.G. Olmstead, 1997. Phylogeny of Poaceae subfamily Pooideae based on chloroplast ndhF gene sequences. Mol. Phylogenet. Evol. 8: 150-166 https://doi.org/10.1006/mpev.1997.0416
  7. Chase, M.W., D.E. Soltis, R.G. Olmstead, D. Morgan, D.H. Les, B.D. Mishler, M.R. Duvall, R.A. Price, H.G. Hills, Y.-L. Qiu, K.A. Kron, J.H. Rettig, E. Conti, J.D. Palmer, J.R. Manhart, K.J. Sytsma, H.J. Michaels, W.J. Kress, K.G. Karol, W.D. Clark, M. Hedren, B.S. Gaut, R.K. Jansen, K.-J. Kim, C.F. Wimpee, J.F. Smith, G.R. Furnier, S.H. Strauss, Q.-Y. Xiang, G.M. Plunkett, P.S. Soltis, S.M. Swensen, S.E. Williams, P.A. Gadek, C.J. Quinn, L.E. Eguiarte, E. Golenberg, G.H. Learn, S.W. Graham Jr., S.C.H. Barrett, S. Dayanandan and V.A. Albert. 1993. Phylogenetics of seed plants: An analysis of nucleotide sequences from the plastid gene rbcL. Ann. Missouri Bot. Gard. 80: 528-580 https://doi.org/10.2307/2399846
  8. Chung, H.J. 2000. Antioxidative and antimicrobial activities of Opuntia ficus-indica var. saboten. Korean J. Soc. Food. Sci. 16: 160-166
  9. Clegg, M.T. 1993. Chloroplast gene sequences and the study of plant evolution. Proc. Natl. Acad. Sci. USA 90: 363-367
  10. Fernandez, M.L., E.C.K. Lin, A. Trejo and D.J. McNamara. 1992. Prickly pear (Opuntia sp) pectin reverses low density lipoprotein rerceptor suppression induced by a hypercholesterolemic diet in guinea pigs. J. Nutr. 122: 2330-2339 https://doi.org/10.1093/jn/122.12.2330
  11. Hamby, R.K. and E.A. Zimmer. 1992. Ribosomal RNA as a phylogenetic tool inplant systematics. In 'Molecular Systematics of Plants' (P.S.Solitis, D.E. Solitis and J.J. Doyle, Eds), Chapman and Hall, London. pp. 50-91
  12. Hemleben, V., B. Leweke, A. Roth and I. Stadler. 1982. Organization of highly repetitive satellite DNA of two Cucurbitaceae species (Cuumis melo and Cucumis sativus). Nucleic Acids Res. 10: 631- 644 https://doi.org/10.1093/nar/10.2.631
  13. Hemleben, V., M. Ganal, J. Gerstner, K. Schiebel and R.A. Torres. 1988. Organization and length heterogeneity of plant ribosomal RNA genes. In 'The Architecture of Eucaryotic Genes' (G. Kahl, Ed.), VCH, Weinhein. pp. 371-383
  14. Ingle, J., J. Timmis and J. Sinclair. 1975. The relationship between satellite deoxyribonucleic acid, ribosomal ribonucleic acid gene redundancy, and genomic size in plants. Plant Physiol. 55: 496-501 https://doi.org/10.1104/pp.55.3.496
  15. Jobst, J., K. King and V. Hemleben. 1998. Molecular evolution of the internal transcribed spacers (ITS1 and ITS2) and phylogenetic relationships among species of the family Cucurbitaceae. Mol. Phylogen. Evol. 9: 204-219 https://doi.org/10.1006/mpev.1997.0465
  16. Ohta, T. 1984. Some models of gene conversion for treating the evolution of multigene families. Genetics 106: 517-528
  17. Olmstead, R.G. and J.D. Palmer. 1994. Chloroplast DNA systematics: A review of methods and data analysis. Am. J. Bot. 81: 1205-1224 https://doi.org/10.2307/2445483
  18. Olmstead, R.G. and P.A. Reeves. 1995. Evidence for the polyphyly of the Scrophulariaceae based on chloroplast rbcL and ndhF sequences. Ann. Missouri Bot. Garden 82: 176-193 https://doi.org/10.2307/2399876
  19. Rieseberg, L.H. and D.E. Soltis. 1991. Phylogenetic consequences of cytoplasmic gene flow in plants. Evol. Trends Plant 5: 65-84
  20. Rieseberg, L.H. and J.F. Wendel. 1993. Introgression and its consequences in plants. In: Harrison, R. (Ed.), Hybrid Zones and the Evolutionary Process. Oxford University Press, Oxford, pp. 70-109
  21. Smith, G.P. 1976. Evolution of repeated DNA sequences by unequal crossover. Science 191: 528-535 https://doi.org/10.1126/science.1251186
  22. Soltis, D.E., P.S. Soltis and J.J. Doyle (Eds.). 1998. Molecular systematics of plants II: DNA sequencing. Kluwer Academic, Boston
  23. Thompson, J.D., D.G. Higgins and T.J. Gilbson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-secific gap penalties and weight matrixchoice. Nucleic Acids Res. 22: 4673- 4680 https://doi.org/10.1093/nar/22.22.4673
  24. Zimmer, E.A., S.L. Martin, S.M. Beverley, Y.W. Kan and A.C. Wilson. 1980. Rapid duplication and loss of genes coding for the $\alpha$-chains of hemoglobin. Proc. Natl. Acad. Sci. USA 77: 2158-2162
  25. 강석호, 이광수, 김병우, 김선영. 1989. 최신화혜원예각론. 선진문화사, 서울.pp. 479
  26. 김태정. 1996. 한국자원식물도감, 향문사, 서울.pp.559
  27. 신태균, 김성호. 1998. 손바닥선인장의 방사선 방호효과. 제주생명과학연구 1(1):25-32
  28. 한용남, 윤상태, 이영철, 최종원. 1999. 손바닥 선인장의 열매와 줄기를 이용한 기능성식품개발 및 생리활성 연구. 농림부, 서울.pp.5