Genetic Variation in the Endemic Rare Tree Species, Juniperus chinensis var. sargentii HENRY

희귀(稀貴) 수종(樹種) 눈향나무 집단(集團)의 동위효소(同位酵素) 분석(分析)에 의한 유전변이(遺傳變異) 연구(硏究)

  • Yang Byeung-Hoon (Department of Genetic Resources, Korea Forest Research Institute) ;
  • Kwon Hae-Yun (Department of Genetic Resources, Korea Forest Research Institute) ;
  • Han Sang-Don (Department of Genetic Resources, Korea Forest Research Institute)
  • 양병훈 (국립산림과학원 산림유전자원부 유전자원과) ;
  • 권해연 (국립산림과학원 산림유전자원부 유전자원과) ;
  • 한상돈 (국립산림과학원 산림유전자원부 유전자원과)
  • Published : 2006.02.01

Abstract

Genetic variation of two Juniperus chinensis var. sargentii populations in Mt. Seorak and Mt. Halla was investigated by isozyme analysis at reproducible 11 loci of 7 isozyme systems(Aat-1, Aat-2, Gdh, Idh, Lap, Mdh-1, Mdh-2, Mdh-3, 6Pgd, Pgi-1, and Pgi-2), of which 7 loci were polymorphic. The levels of genetic diversity of two populations were A=2.2, $A_e=1.61,\;P_{95}=54.5,\;H_{o}=0.179,\;H_e=0.287$(Mt. Seorak population) and A=2.1, $A_e=1.48,\;P_{95}=63.6,\;H_{o}=0.270,\;H_e=0.250$(Mt. Halla population), respectively. These values were similar to and/or somewhat higher than those observed in other Korean native conifers. Moderately low degree of genetic differentiation was observed between 2 analyzed populations ($F_{ST}=0.039$). Heterozygosity of the population in Mt. Seorak was significantly lower than expected, and much high level of inbreeding coefficient(F=0.376) was observed. Considering the limited population size and distribution range of the population, the population seemed to be influenced by inbreeding and/or random genetic drift, Consequently, Mt. Seorak population should be considered to be a more important candidate for the conservation of J. chinensis var. sargentii.

우리나라 고산 지역에 제한적으로 자생하는 희귀 유전자원인 눈향나무(Juniperus chinensis var. sargentii HENRY)의 설악산 및 한라산 집단을 대상으로 동위효소 분석에 의한 유전적 다양성을 조사하였다. 총 7개 동위효소에서 11개의 재현성 있는 유전자좌가 분석되었으며, 이중 Mdh-1, Mdh-2, Mdh-3 및 Pig-1 유전자좌를 제외한 7개 유전자좌에서 다형성이 관찰되었다. 분석된 두 집단의 유전변이량은 각각 A=2.2, $A_e=1.61,\;P_{95}=54.5,\;H_{o}=0.179,\;H_e=0.287$(설악산 집단)과 A=2.1, $A_e=1.48,\;P_{95}=63.6,\;H_{o}=0.270,\;H_e=0.250$(한라산 집단)으로 국내 타 침엽수종으로부터 동위효소 분석을 통해 추정된 유전변이량에 비해 다소 높은 경향을 보였으며, 분석 집단간 유전적 분화 정도는 그리 높지 않은 것으로 나타났다($F_{ST}=0.039$). 설악산 집단의 경우 이형접합도의 관찰치가 기대치에 비해 매우 낮았으며 근교계수 값이 매우 높게 나타나(F=0.376), 전반적으로 근친교배 또는 유전적 부동의 영향을 많이 받고 있는 것으로 추정되었다. 이는 설악산 눈향나무 집단의 분포 면적이나 개체수가 한라산 집단에 비해 매우 적기 때문인 것으로 추정되며, 향후 설악산 집단의 보존을 위한 보다 적극적인 노력이 필요한 것으로 사료된다.

Keywords

References

  1. Chakraborty, R., P.A. Fuerst and M. Nei. 1980. Statistical studies on protein polymorphism in natural populations III. Distribution of allele frequencies and the number of alleles per locus. Genetics 94: 1039-1063
  2. Conkle, M.T., P.D., Hodgskiss, L.B. Nunally and S.C. Huntter. 1982. Starch gel electrophoresis of pine seed: a laboratory manual. U.S. Forest Service General Technical Report PSW-64
  3. Cornuet, J.M. and G. Luikart. 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144: 2001-2014
  4. Gottlieb, L.D., S.I. Warwick and V.S. Ford. 1985. Morphological and electrophoretic divergence between Layia discodea and L. glandulosa. Systematical Botany 10: 484-495 https://doi.org/10.2307/2419141
  5. Hamrick, J.L., Y.B. Linhart and J.B. Mitton. 1979. Relationships between life history characteristics and electrophoretically detectable genetic variation in plants. Annual Review of Ecologial Systematics 10: 173-200 https://doi.org/10.1146/annurev.es.10.110179.001133
  6. Hamrick, J.L. and M.J.W. Godt. 1989. Allozyme diversity in plant species. In: A.H.D. Brown, M.T. Clegg, A.L. Kahler and B.S. Weir(eds). Plant Population Generics, Breeding and Genetic Resources. Sinauer Associates, Sunderland, MA, USA. pp.43-63
  7. Hamrick, J.L., M.J.W. Godt and S.L. Sherman Broyles. 1992. Factors influencing levels of genetic diversity in woody plant species. New Forests 6: 95-124 https://doi.org/10.1007/BF00120641
  8. Hickey, R.J., M.A. Vincent and S.I. Guttman. 1991. Genetic variation in running buffalo clover Trifolium soloniferum, Fabaceae. Conservation Biology 5: 309-316 https://doi.org/10.1111/j.1523-1739.1991.tb00142.x
  9. Karron, J.D., Y.B. Linhart, C.A. Chaulk and C.A. Robertson. 1988. Genetic structure of populations geographically restricted and widespread species of Astragalus (Fabaceae). American Journal of Botany 75: 1114-1119 https://doi.org/10.2307/2444093
  10. Kelley, W.A. and R.P. Adams. 1977. Seasonal variation of isozymes in Juniperus scopulorum: systematic significance. American Journal of Botany 64: 1092-1096 https://doi.org/10.2307/2442165
  11. Kelley, W.A. and R.P. Adams. 1978. Analysis of isozyme variation in natural populations of Juniperus ashei. Rhodora 80: 107-134
  12. Kim, Z.S., S.W. Lee and J.O. Hyun. 1993. Allozyme variation in six native oak species in Korea. Annual Science For. 50 (suppl1): 253- 260 https://doi.org/10.1051/forest:19930725
  13. Kim, Z.S., C.H. Yi and S.W. Lee. 1994. Genetic variation and sampling strategy for conservation in Pinus species pp.294-321. In: Conservation and Manipulation of Generic Resources in Forestry. Eds. Z.S. Kim and H.H. Hattemer. Kwang Moon Kag Pub., Seoul
  14. Kimura, M. and J.F. Crow. 1964. The number of alleles that can be maintained in a finite populations. Genetics 49: 725-738
  15. Kwon, H.Y. and Z.S. Kim. 2002. I-SSR Variation within and among Korean Populations in Taxus cuspidata. Journal of Korean Forestry Society 91(5): 654-660
  16. Ledig, F.T. and M.T. Conkle. 1983. Gene diversity and genetic structure in a narrow endemic. Torrey pine Pinus torreyana Parry ex Carr. Evolution 37: 79-85 https://doi.org/10.2307/2408176
  17. Ledig, F.T., V. Jacob-Cervantes, P.D. Hodgskiss and T. Eguiluz-Piedra. 1997. Recent evolution and divergence among populations of a rare Mexican endermic, Chihuahua spruce, following Holocene climatic warming. Evolution 51: 1815-1827 https://doi.org/10.2307/2411004
  18. Lee, S.W., S.C. Kim, W.W. Kim, S.D. Han and K.B. Yim. 1997. Characteristics of leaf morphological, vagetation and genetic variation in the endemic population of a rate tree species, Koelreuteria paniculata Laxm. Journal of Korean Forestry Society 86: 167-176 (in Korea)
  19. Lee, S.W., S.C. Kim and H.S. Lee. 1998. Allozyme variation in Abeliophyllum distichum Nakai. an endemic tree spicies of Korea. Silvae Genetica. 47: 294-298
  20. Lesica, P., R.T. Leary, F.W. Allendorf and D.E. Bilderback. 1988. Lack of genetic diversity within and among populations of an endangered plant, Howellia aquatilis. Conservation Biology 2: 275-282 https://doi.org/10.1111/j.1523-1739.1988.tb00184.x
  21. Levene, H. 1949. On a matching problem in genetics. Annual Mathematical Statistics 20: 91-94 https://doi.org/10.1214/aoms/1177730093
  22. Lewis, P.O. and D.J. Crawford 1995. Pleistocene refugium endemics exhibit greaters in the genus than widespread congeners in the genus Polygonella(Polygonaceae). American Journal of Botany 82: 141- 149 https://doi.org/10.2307/2445522
  23. Loveless, M.D. and J.L. Hamrick. 1984. Ecological determinants of genetic structure in plant populations. Annual Review of Ecological Systematics 15: 65-95 https://doi.org/10.1146/annurev.es.15.110184.000433
  24. Luikart, G. and J.M. Cornuet. 1997. Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conservation Biology 12: 228-237 https://doi.org/10.1046/j.1523-1739.1998.96388.x
  25. Luikart, G., F.W. Allendorf, J.M. Cornuet and W.B. Sherwin. 1998. Distortion of allele frequency distributions provides a test for recent population bottlenecks. Genetics 89: 238-247
  26. Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590
  27. Piry, S., G. Luikart and J.M. Cornuet. 1999. BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. Journal of Heredity 90: 502-503 https://doi.org/10.1093/jhered/90.4.502
  28. Ranker, T.A. 1994. Evolution of high genetic variability in the rare Hawaiian fern Adenophorus periens and implications for conservation management. Biological Conservation 70: 19-24 https://doi.org/10.1016/0006-3207(94)90294-1
  29. Sokal, R.R. and F.J. Rohlf. 1981. Biometry. 2nd ed. WH Freeman. San Francisco. USA. 859p
  30. Swofford, D.L. and R.B. Selander. 1989. BIOSYS-1: a computer program for the analysis of allelic variation in population genetics and biochemical systematics, release 1.7. Illinois Natural History Survey. Champaign. Illinois. USA
  31. Waller, D.M., D.M. O' Malley and S.C. Gawler. 1987. Genetic variation in the extreme endemic Pedicularis furbishize (Scrophulariaceae). Conservation Biology 1: 335-340 https://doi.org/10.1111/j.1523-1739.1987.tb00053.x
  32. Wright, S. 1978. Evolution and the Genetics of Populations. Variability Within and Among Populations. University of Chicago Press. Chicago. Illinois. USA
  33. 김영수, 장준명, 백선근. 2001. 우리지역에서 자라는 나무(수목도감). 도서출판 고인돌. pp.44
  34. 김정석, 김영두, 정우규. 1985. Juniperus chinensis 7 변종의 세포학적 특성. 한국임학회지 77: 22-26
  35. 산림청. 1997. 희귀 및 멸종위기 식물도감. 생명의 나무. Pp.21
  36. 심경구, 서병기. 1995. 한국자생으로서 미국 및 캐나다에서 재배되고 있는 조경수목(교목)에 관한 연구. 한국조경학회지 22(4):95-117
  37. 이석우, 김찬수, 조경진, 최완용. 1997. 희귀수종 시로미의 유전변이. 한국육종학회지 29: 376-381
  38. 정태현. 1965. 한국동식물도감. 식물편(목.초본류). 삼화출판사.pp.128-129
  39. 최형순, 홍경낙, 정재민, 김원우. 2004. 희귀식물인 눈향나무(Juniperus chinensis var. sargentii)의 공간분포에 따른 유전구조 및 유전적다양성. 한국생태학회지27(5):257-261
  40. 홍용표, 권해연, 양병훈, 이석우, 김찬수, 한상돈. 2004. 설악산 격리 잔존 눈잣나무 집단의 유전적 성상. 한국임학회지 93(5): 393-400