Analysis of Heart Rate Variability in Constitution Types During Active and Passive Coping Caused dy Electroacupuncture

통증으로 유발한 능동 및 수동 대처상황에서 체질에 따른 Heart Rate Variability 분석

  • Kim Jin-Keun (Department of Physiology, College of Oriental Medicine, Dongshin University) ;
  • Jang Kyeong-Seon (Department of Physiology, College of Oriental Medicine, Dongshin University) ;
  • Lee Sang-Kwan (Department of Internal Medicine, College of Oriental Medicine, Wonkwang University)
  • 김진근 (동신대학교 한의과대학 생리학교실) ;
  • 장경선 (동신대학교 한의과대학 생리학교실) ;
  • 이상관 (원광대학교 한의과대학 심계내과학교실)
  • Published : 2006.02.01

Abstract

The purpose of this study is to investigate the relationships between the biological base of coping strategy and the different constitutions. First of all, subjects were divided in to 3 groups dy Questionnaire for the Sasang Constitution Classification II and Yin-Yang Property Analysis. Then each group was assigned into two experimental coping conditions, active and passive condition, in turn. The SDNN(The Standard Deviation of the NN Intervals) of HRV(Heart rate variability) index was estimated from two conditions after giving a aversive pain stimulus. The results of the study were as follows 1. The interaction between constitution and coping condition is significant(p<0.05). 2. The SDNNs of Shaoyangren are higher than those of Taiyinren under passive condition but it was opposite under active condition(p<0.05). 3. The main effect of constitution is also significant but that of coping condition is not significant. 4. Thee Shaoyangren is higher than Shaoyinren in multiple comparisons(p<0.05). 5. The interaction between Yin-Yang constitution and coping condition is significant and the main effect of only constitution is significant(p<0.05). According to these results, different constitution can respond differently to coping condition and It is highly related to biological mechanism associated with two basic coping strategies.

Keywords

References

  1. Richard Bandler, Kevin A Keay, Nicole Floyd and Joseph Price : Central circuits mediating patterned autonomic activity during active vs. passive emotional coping, Brain Research, 53(1):95-104, 2000 https://doi.org/10.1016/S0361-9230(00)00313-0
  2. Zuckerman, M. : Personality in the third dimension: a psychobiological approach, Pers. Individual Differences 10:391-418, 1989 https://doi.org/10.1016/0191-8869(89)90004-4
  3. Eysenck, H.J., Biological dimensions of personality. In: Pervin, L.A.(Ed), Handbook of Personality, Guilford Press, New York, pp 244-276
  4. Eysenck, H.J. Personality: biological foundations. In: Vernon, P.A.(Ed.), The Neuropsychology of Individual Differences, Academic Press, London, pp 151-207
  5. Helen, C., Beh, Mary-Ellen Harrod : Physiological responses in high-P subjects during active and passive coping, International Journals of Psychophysiology, 28:291-300, 1998 https://doi.org/10.1016/S0167-8760(97)00079-2
  6. Depaulis, A., Keay, K.A., Bandler, R. : Longitudinal neuronal organisation of defensive reations in the midbrain periaqueductal gray region of the rat, Exp Brain Res, 90: 307-18, 1992 https://doi.org/10.1016/S0079-6123(08)63620-1
  7. Lee, J.M., Choi, S.H.(Eds) Longevity & Preservation In Oriental Medicine. seoul, Korea. Kyung Hee University Press. 1996
  8. 송일병: 사상체질진단의 객관화연구에 대한 현황 및 전망, 사상의학회지, 10(1):1-11, 1998
  9. 허만회, 송정모, 김달래, 고병희 : 사상인의 형태학적 도식화에 관한 연구, 사상의학회지, 4(1):107-148, 1992
  10. 이의주, 고병희, 송일병 : 사상인의 형태학적 특징에 관한 연구, 사상의학회지, 10(2):181-220, 1998
  11. 송정모, 이의주: 한국인 신체분절에 대한 사상의학적 연구, 사상의학회지, 10(1):143-160, 1998
  12. 이의주, 홍석철, 김종원, 최창석, 조용진, 송일병, 고병희: 사상체질별 두면부의 형태학적 특징, 사상의학회지, 8(1):101-186, 1996
  13. 고병희, 최창석, 조용진, 한기환, 이의주, 이수경, 홍석철: 체간부의 사상체질별 형태학적 특징에 대한 연구, 사상의학회지, 10(1):101-142, 1998
  14. 조황성, 고병희, 이창수, 조동욱: 유전자지문법을 이용한 사상체질의 유전적 분석연구, 사상의학회지, 8(2):151-163, 1996
  15. 고병희, 홍석철, 이의주, 지상은, 김대원, 김도균, 안선경, 조동욱: Amp-FLP을 이용한 사상체질의 유전적 분석 연구, 사상의학회지, 9(2):163-173, 1997
  16. 최승훈, 임용빈, 이준우, 김홍열, 강철훈 : 사상체질유형과 ACE(angiotensin converting enzyme) 유전자 Type(polymorphism)과의 상관관계, 사상의학회지, 10(2):283-290, 1998
  17. Kim, S.H., Ko. B,H,, Song. I,B. The validation study of the Qusionnaire for Sa-sang constitution classification. J. Constitutional Medicine 7, 247-294, 1996
  18. Lee, J.C., Ko, B.H., Song, I.B. A study on the standardization of QSCCII. J. Constitutional Medicine 7, 187-246, 1996
  19. 탁진국. 심리검사. 서울: 학지사, 77-161, 2001
  20. 이상범, 최경미, 박영배. 음양인 유형분류에 관한 연구(설문지를 중심으로). 대한한의학회지. 25(1):1-20, 2004
  21. Alkselrod, S., Gordon, D., Ubel, F.A., Shannon, D.C., Barger, A.C., Cohen, R.J. Power spectrum analysis of heart rate fluctuation: a quantitive probe of beat-to-beat cardiovascular control. Science 213:220-222, 1981 https://doi.org/10.1126/science.6166045
  22. Pomeranz, B., Macaulay, R.J.B., Caudil,l M.A., Kutz, I., Adam, D., Gordon, D., et al. Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol 248:H151-H153, 1985
  23. Task force of the european society of cardiology and the north american society of pacing and electro physiology. Heart rate variability-standard of measurement, physiological interpretation, and clinical use. European Heart J 17:354-381, 1996 https://doi.org/10.1093/oxfordjournals.eurheartj.a014868
  24. McCraty, R., Atkinson, M., Tiller, W.A., Rein, G., Watkins, A.D. : The effects of emotions on short-term power spectrum analysis of heart rate variability, Am J Cardiol 76:1089-1093, 1995 https://doi.org/10.1016/S0002-9149(99)80309-9
  25. Warren, J.H., Jaffe, R.S., Wraa, C.E., Stebbins, C.L. Effect of autonomic blockade on power spectrum of heart rate variability during exercise, Am J Physiol 273:R495-502, 1997
  26. Bandler, R., Dpaulis, A. Midbrain periaqueductal gray control of defensive behavior in the cat, In: Depaulis A, Bandler R, editors. The midbrain periaqueductal gray matter: functional, anatomical and neurochemical organization, New York, Plenum Press, pp 175-98, 1991
  27. Bandler, R., Carrive, P. Integrated defence reaction elicited by excitatory amino acid microinjuction in the midbrain periaqueductal grey region of the unrestrained cat, Brain Res 439(1-2):95-106, 1988 https://doi.org/10.1016/0006-8993(88)91465-5
  28. Bandler, R., Shipley, M.T. Columnar organization in midbrain periaqueductal gray: modules for emotional expression?, Trends Neurosci, 17(9):379-389, 1994 https://doi.org/10.1016/0166-2236(94)90047-7
  29. Lovick, T.A. Integrated activity of cardiovascular and pain regulatory systems: role in adaptive behavioural responses, Prog Neurobiol, 40:631-644, 1993 https://doi.org/10.1016/0301-0082(93)90036-R
  30. Krieger, J.E., Graeff, F.G. Defensive behavior and hypertension induced by glutamate in the midbrain central gray of the rat, Braz J Med Biol Res, 18(1):61-67, 1985
  31. Yardley, C.P., Hilton, S.M. The hypothalamic and brainstem areas from which the cardiovascular and behavioural components of the defense reaction are elicited in the rat, J Auton Nerv Syst, 15:227-244, 1986 https://doi.org/10.1016/0165-1838(86)90066-4
  32. Carrive, P., Bandler, R. Control of extracranial and hindlimb blood flow by the midbrain periaqueductal grey of the cat, Exp Brain Res, 84(3):599-606, 1991
  33. Nakai, M., Maeda, M. Nitrergic cerebral vasodilatation provoked by the periaqueductal grey, Neuroreport, 7(15-17):2571-2574, 1996 https://doi.org/10.1097/00001756-199611040-00033
  34. Carrive, P., Bandler, R. Viscerotopic organization of neurons subserving hypotensive reactions within the midbrain periaqueductal grey: a correlative functional and anatomical study, Brain Res, 541(2):206-215, 1991 https://doi.org/10.1016/0006-8993(91)91020-2
  35. Keay, K.A., Crowfoot, L.J., Floyd, N.S., Henderson, L.A., Christie, M.J., Bandler, R. Cardiovascular effects of microinjections of opioid agonists into the depressor region of the ventrolateral periaqueductal gray region, Brain Res, 762(1-2):61-71, 1997 https://doi.org/10.1016/S0006-8993(97)00285-0
  36. Carrive, P., Dampney, R.A., Bandler, R. Somatic and autonomic integration in the midbrain of the unanesthetized decerebrate cat: a distinctive pattern evoked by excitation of neurones in the subtentorial portion of the midbrain periaqueductal grey, Brain Res, 483(2):251-258, 1989 https://doi.org/10.1016/0006-8993(89)90169-8
  37. Carrive, P., Bandler, R. Viscerotopic organization of neurons subserving hypotensive reactions within the midbrain periaqueductal grey: a correlative functional and anatomical study, Brain Res, 541(2):206-215, 1991 https://doi.org/10.1016/0006-8993(91)91020-2
  38. Zhang, S.P., Davis, P., Bandler, R., Carrive, P. Brain stem integration of vocalization: role of the midbrain periaqueductal gray, J Neurophysiol, 72:1337-1356, 1994 https://doi.org/10.1152/jn.1994.72.3.1337
  39. Bandler, R., Keay, K.A., Floyd, N., Price, J. Central circuits mediating patterned autonomic activity during active vs. passive emotional coping, Brain Res Bull, 53(1):95-104, 2000 https://doi.org/10.1016/S0361-9230(00)00313-0
  40. Carrive, P. The periaqueductal gray and defensive behavior: functional representation and neuronal organization, Behav Brain Res, 58(1-2):27-47, 1993 https://doi.org/10.1016/0166-4328(93)90088-8
  41. Abols, I.A., Basbaum, A.I. Afferent connections of the rostral medulla of the cat: a neural substrate for midbrain-medullary interactions in the modulation of pain, J Comp Neurol, 201(2):285-297, 1981 https://doi.org/10.1002/cne.902010211
  42. Cameron, A.A., Khan, I.A., Westlund, K.N., Willis, W.D. The efferent projections of the periaqueductal gray in the rat: a Phaseolus vulgaris-leucoagglutinin study. II. Descending projections, J Comp Neurol, 35(1):585-601, 1995
  43. Chen, S., Aston-Jones, G. Extensive projections from the midbrain periaqueductal gray to the caudal ventrolateral medulla: a retrograde and anterograde tracing study in the rat, Neuroscience, 71:443-459, 1996 https://doi.org/10.1016/0306-4522(95)00437-8
  44. Ennis, M., Xu, S.J., Rizvi, T.A. Discrete subregions of the rat midbrain periaqueductal gray project to nucleus ambiguus and the periambigual region. Neuroscience. Oct;80(3):829-845, 1997 https://doi.org/10.1016/S0306-4522(97)00051-1
  45. Henderson, I.A., Keay, K.A., Bandler, R. The ventrolateral periaqueductal gray projects to caudal brainstem depressor regions: a functional-anatomical and physiological study, Neuroscience, 82(1):201-221, 1998 https://doi.org/10.1016/S0306-4522(97)00267-4
  46. Holstege, G., Kuypers, H., Boer, R. Anatomical evidence for direct brain stem projections to the somatic motoneuronal cell groups and autonomic preganglionic cell groups in cat spinal cord, Brain Res, 171(2):329-333, 1979 https://doi.org/10.1016/0006-8993(79)90337-8
  47. Hudson, P.M., Lumb, B.M. Neurones in the midbrain periaqueductal grey send collateral projections to nucleus raphe magnus and the rostral ventrolateral medulla in the rat, Brain Res, 733(1):138-141, 1996 https://doi.org/10.1016/0006-8993(96)00784-6
  48. Keay, K.A., Bandler, R. Anatomical evidence for segregated input from the upper cervical spinal cord to functionally distinct regions of the periaqueductal gray region of the cat, Neurosci Lett, 139(2):143-148, 1992 https://doi.org/10.1016/0304-3940(92)90538-I
  49. Keay, K.A., Feil, K., Gordon, B.D., Herbert, H., Bandler, R. Spinal afferents to functionally distinct periaqueductal gray columns in the rat: an anterograde and retrograde tracing study, J Comp Neurol, 385:207-229, 1997 https://doi.org/10.1002/(SICI)1096-9861(19970825)385:2<207::AID-CNE3>3.0.CO;2-5
  50. Mouton, L.J., Klop, E., Holstege, G. Lamina I-periaqueductal gray (PAG) projections represent only a limited part of the total spinal and caudal medullary input to the PAG in the cat, Brain Res Bull, 54(2):167-174, 2001 https://doi.org/10.1016/S0361-9230(00)00442-1
  51. Keay, K.A., Clement, C.I., Bandler, R. The neuroanatomy of cardiac nociceptive pathways : differential representations of superficial and deep pain. In: Ter-Horst G(Ed.). The nervous system and the heart, Clifton, UK, Humanae Prdss, p 303-342, 2000
  52. Bandler, R., Tork, I. Midbrain periaqueductal grey region in the cat has afferent and efferent connections with solitary tract nuclei, Neurosci Lett, 74:1-6, 1987 https://doi.org/10.1016/0304-3940(87)90041-3
  53. Chen, L.W., Rao, Z.R., Shi, J.W. Catecholaminergic neurons in the nucleus tractus solitarii which send their axons to the midbrain periaqueductal gray express Fos protein after noxious stimulation of the stomach: a triple labeling study in the rat, Neurosci Lett, 189:179-181, 1995 https://doi.org/10.1016/0304-3940(95)11475-C
  54. Blanchard, D.C., Sakai, R.R., McEwen, B., Weiss, S.M., Blanchard, R.J. Subordination stress: behavioural, brain and neuroendocrine correlates, Behav Brain Res, 58:113-121, 1993 https://doi.org/10.1016/0166-4328(93)90096-9
  55. Bandler, R., Keay, K.A. Columnar organization in the midbrain periaqueductal gray and the integration of emotional expression, Prog Brain Res, 107:285-300, 1996 https://doi.org/10.1016/S0079-6123(08)61871-3
  56. Bandler, R., Price, J.L., Keay, K.A. Brain mediation of active and passive emotional coping, Prog Brain Res, 122:333-349, 2000
  57. Clement, C.I., Keay, K.A., Owler, B,K,, Bandler, R. Common patterns of increased and decreased fos expression in midbrain and pons evoked by noxious deep somatic and noxious visceral manipulations in the rat, J Comp Neurol, 366:495-515, 1996 https://doi.org/10.1002/(SICI)1096-9861(19960311)366:3<495::AID-CNE9>3.0.CO;2-#
  58. Clement, C.I., Keay, K.A., Podzebenko, K., Gordon, B.D., Bandler, R. Related Articles : Spinal sources of noxious visceral and noxious deep somatic afferent drive onto the ventrolateral periaqueductal gray of the rat, J Comp Neurol, 425:323-344, 2000 https://doi.org/10.1002/1096-9861(20000925)425:3<323::AID-CNE1>3.0.CO;2-Z
  59. Keay, K.A., Clement, C.I., Owler, B., Depaulis, A., Bandler, R. Convergence of deep somatic and visceral nociceptive information onto a discrete ventrolateral midbrain periaqueductal gray region, Neuroscience,, 61(4):727-732, 1994 https://doi.org/10.1016/0306-4522(94)90395-6
  60. Keay, K.A., Bandler, R. Deep and superficial noxious stimulation increases Fos-like immunoreactivity in different regions of the midbrain periaqueductal grey of the rat, Neurosci Lett, 154:143-158, 1993
  61. Tassorelli, C., Joseph, S.A. Systemic nitroglycerin induces Fos immunoreactivity in brainstem and forebrain structures of the rat, Brain Res, 682(1-2):167-181, 1995 https://doi.org/10.1016/0006-8993(95)00348-T
  62. M.M. Behbehani Functional characteristics of the midbrain periaqueductal gray, Prog. Neurobiol, 46:575-605, 1995 https://doi.org/10.1016/0301-0082(95)00009-K
  63. S.M. Hilton, W.S. Redfern : A search for brain stem cell groups integrating the defence reaction in the rat, J. Physiol, 378:213-228, 1986 https://doi.org/10.1113/jphysiol.1986.sp016215
  64. Eszter Farkas, Arthur, S.P., Jansen, Arthur, D. Loewy : Periaqueductal gray matter projection to vagal preganglionic neurons and the nucleus tractus solitarius, Brain Research 764:257-261, 1997 https://doi.org/10.1016/S0006-8993(97)00592-1
  65. M. ennis, S.J. Xu, T.A. Rizvi, M.M. Behbehani, M.T. Shipley : The midbrain periaqueductal gray (PAG) densely innervates medullary regions containing cholinergic vago-cardiac neurons, Soc. Neurosci. Abstr., 19:953, 1993
  66. D.A. Hopkins, D. Bieger, J. De Vente, H.W.M. Steinbusch : Vagal efferent projections: viscerotopy, neurochemistry and effects of vagotomy, Prog Brain Res, 107:79-96, 1996 https://doi.org/10.1016/S0079-6123(08)61859-2
  67. P. Izzo, J. Duchars, K.M. Spyer : Localization of cardiac vagal preganglionic motoneurones in the rat: immunocytochemical evidence of synaptic inputs containing 5-hydroxytryptamine, J Comp Neurol, 327:572-583, 1993 https://doi.org/10.1002/cne.903270408
  68. G.J. Ter Horst, R.W.M. Hautvast, M.J.L. De Jongste, J. Korf : Neuroanatomy of cardiac activity-regulating circuitry: a transneuronal retrograde viral labelling study in the rat, Eur J Neurosci, 8:2029-41, 1996 https://doi.org/10.1111/j.1460-9568.1996.tb00723.x
  69. K. Inui, S. Murase, S. Nosaka : Facilitation of the arterial baroreflex by the ventrolateral part of the midbrain periaqueductal grey matter in rats, J. Physiol, 477:89-101, 1994 https://doi.org/10.1113/jphysiol.1994.sp020174
  70. S. Nosaka, K. Murata, K. Inui, S. Murase : Arterial baroreflex inhibition by midbrain periaqueductal grey in anaesthetized rats, Pflugers Arch. 424:266-275, 1993 https://doi.org/10.1007/BF00384352
  71. Eszter Farkas, Arthur S.P. Janses, Arthur D. Loewy : Periaqueductal gray matter input to cardiac-related sympathetic premotor neurons, Brain Research, 792:179-192, 1998 https://doi.org/10.1016/S0006-8993(98)00029-8
  72. Akselrod, S., Gordon, D., Madwed, J.B., Snidman, N.C., Shannon, D.C., Cohen, R.J. Hemodynamic regulation, investigation by spectral analysis, Am J Physiol, 249:H867-875, 1985
  73. Pagani, M., Lombardi, F., Guzzetti, S., Rimoldi, O., Furlan, R., Pizzinelli, P., et al : Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res, 59:178-193, 1986 https://doi.org/10.1161/01.RES.59.2.178
  74. Stein, P.K., Bosner, M.S., Kleiger, R.E., Conger, B.M. Heart rate variability : a measure of cardiac autonomic tone, Am Heart 127:1376-1381, 1994 https://doi.org/10.1016/0002-8703(94)90059-0
  75. 박아청, 성겨심리학-성격과 인간해석, 서울, 교육과학사, 1992
  76. 조창현, 조윤성, 이상관, 동의생리병리학회지 19(6):1491-1495. 2005
  77. Sangkwan, Lee., Euisuk Jeong, Kangkeyng Sung : Study of personality traits in constitutional types, Korean J. Oriental Phsiology & Pathology 18(6):1892-1895, 2004
  78. Eysenck, H.J., Eysenck, M.W. Personality and individual differences : a natural science approach, Plenum Press, New York & London, 1985