"솔보포빅"한 고분자 마이크로 캡슐을 이용한 효소 안정화에 관한 연구

Stabilization of Enzyme in "Solvophobically" Controlled Polymer Microcapsules

  • 김용진 (태평양 기술연구원 피부과학연구소) ;
  • 김진웅 (태평양 기술연구원 피부과학연구소) ;
  • 김준오 (태평양 기술연구원 피부과학연구소) ;
  • 김진우 (태평양 기술연구원 화장품연구소) ;
  • 장이섭 (태평양 기술연구원 피부과학연구소)
  • 발행 : 2006.03.03

초록

본 연구는 효소의 활성을 저해하는 주위 환경, 특히 열로부터 효소의 활성을 장기간 유지할 수 있는 효소 안정화 시스템에 대한 것으로, 이 시스템은 poly(${\epsilon}-caprolactone$) (PCL) 마이크로 캡슐로, 파파인 효소를 모델 효소로 하여, poly(propylene glycol) (PPG) 층이 코어 효소층을 둘러싸고 있는 형태로 설계되어 있다. 공촛점 현미경 및 장기 열 안정도 결과를 분석해본 결과, 파파인 효소가 소수성 PPG로 둘러쌓여 있고, 배타적 볼륨 효과(exclusive volume effect)에 의해 안정화되어 있음을 밝힐 수 있었다. 이와 같이 향상된 효소의 열 안정도는 소수성 사슬이 긴 PPG를 사용할수록 증가됨을 알 수 있었으며, 이것은 효소와 PPG 계면 사이에서 PPG 층이 파파인 효소를 효과적인 형태 고정(conformational anchoring)을 통해 안정화한 것임을 알 수 있었다.

This article describes an enzyme stabilization method that allows the use of enzymes irrespective of environmental factors, especially heat, while maintaining their activity for a long time. We have designed enzyme microcapsules that consist of papain enzyme cores, poly(propylene glycol) interlayers, and poly(${\epsilon}-caprolactone$) walls. By confocal laser scanning microscopy measurements and the thermal stability of papain-loaded microcapsules, it is demonstrated that the papain is surrounded by a hydrophobic polyol layer and stabilized by the exclusive volume effect. In our study, improved thermal stability can be obtained by using more hydrophobic long-chained polyols, which is understood to be attributed to the effective formation of a hydrophobic polyol layer between the papain and the polymer wall by means of conformational anchoring in the interface.

키워드

참고문헌

  1. J. Wang, A. Ibanez, and M. P. Chatrathi, On-chip integration of enzyme and imrnunoassays: simultaneous measurements of insulin and glucose, J. Am Chem Soc., 125, 8444 (2003) https://doi.org/10.1021/ja036067e
  2. K. Besteman, J.-O. Lee, F. G. M. Wiertz, H A. Heering, and C. Dekker, Enzyme-coated carbon nanotubes as single-molecule biosensors, Nano Lett., 3, 727 (2003) https://doi.org/10.1021/nl034139u
  3. J. Pei, F. Tian, and T. Thundat, Glucose biosensor based on the microcantilever, Anal. Chem, 76, 292 (2004) https://doi.org/10.1021/ac035048k
  4. F. M. Gomes, E. B. Pereira, and H F. de Castro, Immobilization of lipase on chitin and its use in nonconventional biocatalysis, Biomacromolecules, 5, 17 (2004) https://doi.org/10.1021/bm0342077
  5. J. R. Cherry, M. H Lamsa, P. Schneider, J. Vind, A Svendsen, A Jones, and A H Pedersen, Directed evolution of a fungal peroxidase, Nat. Biotechnol., 17, 379 (1999) https://doi.org/10.1038/7939
  6. H-T. Deng, Z.-K. Xu, X-J. Huang, J. Wu, and P. Seta, Adsorption and activity of candida rugosa lipase on polypropylene hollow fiber membrane modified with phospholipid analogous polymers, Langmuir, 20, 10168 (2004) https://doi.org/10.1021/la0484624
  7. J. Li, J. Wang, V. G. Gavalas, D. A. Atwood, and L. G. Bachas, Alumina-pepsin hybrid nanoparticles with orientation-specific enzyme coupling, Nano Lett., 3, 55 (2003) https://doi.org/10.1021/nl025778s
  8. J. D. Brennan, D. Benjamin, E. DiBattista, and M. D. Gulcev, Using sugar and amino acid additives to stabilize enzymes within sol-gel derived silica, Chem Mater., 15, 737 (2003) https://doi.org/10.1021/cm020768d
  9. A M. Dessouki and K. S. Atia, Immobilization of adenosine deaminase onto agarose and casein, Biomacromolecules, 3, 432 (2002) https://doi.org/10.1021/bm0156025
  10. P. Lozano, J. Cano,J. L. Iborra, and A. Manjon, Influence of polyhydroxylic cosolvents on papain therrnostability, Enzyme Microb. Technol., 15, 868 (1993) https://doi.org/10.1016/0141-0229(93)90099-N
  11. P. Lozano, D. Combes, and J. L. Iborra, Effect of polyols on $\alpha$-chymotrypsin thermostability: a mechanistic analysis of the enzyme stabilization, J. Biotechnol., 35, 9 (1994) https://doi.org/10.1016/0168-1656(94)90186-4
  12. J. K. Kaushick and B. Bhat, Thermal stability of proteins in aqueous polyol solutions: role of the surface tension of water in the stabilizing effect of polyols, J. Phys. Chem B, 102, 7058 (1998) https://doi.org/10.1021/jp981119l
  13. R. O. Bustos, C. R. Romo, and M. G. Healy, Stabilisation of trypsin-like enzymes from antarctic krill: effect of polyols, polysaccharides and proteins, J .Chem Technol. Biotechnol., 65, 193 (1996) https://doi.org/10.1002/(SICI)1097-4660(199602)65:2<193::AID-JCTB398>3.0.CO;2-T
  14. M. Matsumoto, K. Kida, and K. Kondo, Effects of polyols and organic solvents on therrnostability of lipase, J. Chem Technol. Biotechnol., 70, 188 (1997) https://doi.org/10.1002/(SICI)1097-4660(199710)70:2<188::AID-JCTB745>3.0.CO;2-X
  15. R. D. Domenico, R. Lavecchia, and A. Ottavi, Theoretic information approach to protein stabilization by solvent engineering, AIChE J.,46, 1478 (2000) https://doi.org/10.1002/aic.690460721
  16. L. G. Theodorou, K. Lymperopoulos, J. G. Bieth, and E. M. Papamichael, insight into the catalysis of hydrolysis of four newly synthesized substrates by papain: a proton inventory study, Biochemistry, 40, 3996 (2001) https://doi.org/10.1021/bi001615b
  17. http://www.geocities.com/bramsugar/int2.html
  18. R. Arshady, Preparation of biodegradable microspheres and microcapsules 2. polyactides and related polyesters, J. Control. Rel., 17, 1 (1991) https://doi.org/10.1016/0168-3659(91)90126-X
  19. R. Atkin, P. Davies, J. Hardy, and B. Vincent, Preparation of aqueous core/polymer shell microcapsules by internal phase separation, Macromolecules, 37, 7979 (2004) https://doi.org/10.1021/ma048902y
  20. J.-W. Kim, S.-A. Cho, H-H Kang, S.-H Han, I.-S. Chang, O.-S. Lee, and K.-D. Suh, New approach to produce monosized polymer microcapsules by the solute co-diffusion method, Langmuir, 17, 5435 (2001) https://doi.org/10.1021/la001654o
  21. A. Lamprecht, U. F. Schafer, and C.-M. Lehr, Characterization of microcapsules by confocal laser scanning microscopy: structure, capsule wall composition and encapsulation rate, Eur. J. Pharm Biopharm, 49, 1 (2000) https://doi.org/10.1016/S0939-6411(99)00063-6
  22. A. A. Lamprecht, U. F. Schafer, and C.-M. Lehr, Visualization and quantification of polymer distribution in microcapsules by confocal laser scanning microscopy (CLSM), Int. J. Pharma, 196, 223 (2000)
  23. A. B. Schreiber and J. Haimovich, Quantitative fluorometric assay for detection and characterization of Fe receptors, Methods Enzymol., 93, 147 (1983) https://doi.org/10.1016/S0076-6879(83)93039-2
  24. M. L. Hwang, R. K. Prud'hornrne, J. Kohn, and J. L. Thomas, Stabilization of phosphatidylserine/phosphatidylethanolarnine liposomes with hydrophilic polymers having multiple 'Sticky Feet', Langmuir, 17, 7713 (2001) https://doi.org/10.1021/la011121v
  25. C. y. Chen, M. A. Even, J. Wang, and Z. Chen, Sum frequency generation vibrational spectroscopy studies on molecular conformation of liquid polymers poly(ethylene glycol) and poly (propylene glycol) at different interfaces, Macromolecules, 35, 9130 (2002) https://doi.org/10.1021/ma020614j
  26. M. Carlsson, D. Hallen, and P. Linse, Mixing enthalpy and phase separation in a poly (propylene oxide) water system, J. Chem Soc; Faraday Trans., 91, 2081 (1995) https://doi.org/10.1039/ft9959102081