The Differences in Efficacy and Effect of Herbal Extracts by the Part and Solvent Extraction from the Medical Plants

약용식물의 부위별 및 추출용매에 따른 효능효과의 차이

  • Kim, Kyung-Dong (R&D Center, Hansaeng Cosmetics Co.) ;
  • Na, Min-Kyun (Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Sang-Jin (Department of Cosmetic Science, Daejeon Health Sciences College)
  • Published : 2006.06.30

Abstract

This study was to describe the differences in efficacy and effect of herbal extracts by the part and solvent extraction from the medical plants used as materials of oriental herbs cosmetics. And, this study was to apply to the test method of efficacy and effect related to the antioxidation as herbal extracts, complex of actual ingredient, not existing analytical methods of single ingredient. After screening the medical plants with the antioxidative activity primarily and selecting 11 sorts of medical plants to be used by the part in the literature, this study was to confirm the differences through the well-known test methods like DPPH radical scavenging activity test and hydroxyl radical scavenging activity test. For examples, in case of Trachelospermum asiaticum, compared with the aerial part and fruit, the value of DPPH radical scavenging activity test had $25.2 {\pm} 0.2$ and $62.4 {\pm}1.6$ each. It has shown that the value of fruit had 2.4 times higher effect than the one of aerial part. In case of hydroxyl scavenging activity test, it was effective in the fruit, but it has shown that there was no effect on the aerial part. It showed the same phenomena in some other plants. From the result above, this researcher could understand that it needed to consider extracting the medical plants or plants with the active principle by the part. Also, this study was to confirm the differences in effect according to the solvent as it changed the solvent extraction after selecting a plant (Lithospermum erythrorhizon) widely used for medicine and dye. As a result of measuring the actual value of superoxide scavenging activity test, this study was to consider that there were differences by the part or solvent extraction in extracting and using the medical plants as it has shown that the effect differences produced $10{\sim}80%$ according to the solvent. When it was applied to the products, this study has shown that it needed to decrease the possible errors.

본 연구는 한방화장품의 원료로써 사용이 되는 약용식물들의 부위별 및 추출용매에 따른 추출물의 효능효과의 차이를 기술하였다. 기존의 단일성분 분석법 보다 실제로 성분의 복합체인 추출물에 대하여 항산화 관련 효능효과 시험법을 적용하였다. 일차적으로 항산화활성을 가지는 약용식물을 선별한 후, 문헌상 부위별로 사용이 가능한 약용식물 11종을 선정하여 DPPH radical 소거활성 및 hydroxyl radical 소거활성과 같이 널리 알려진 시험법을 통하여 차이를 확인하였다. 예를 들자면 Trachelospermum asiaticum 경우 aerial part와 fruit를 비교하면 DPPH radical 소거활성인 경우 값이 각각 $25.2 {\pm} 0.2$$62.4 {\pm}1.6$로 fruit가 2.4배의 높은 효과를 보이며, hydroxyl radical 소거 활성의 경우에는 fruit에서는 효과를 보이지만 aerial part에서는 효과를 확인할 수 없었다. 몇 가지 다른 식물들도 같은 형태를 보여주고 있다. 이 결과로 약용식물 또는 유효성분을 가지는 식물을 추출함에 있어서 부위별 추출이 고려되어야 함을 알 수 있었다. 또한 약용과 염료용으로 많이 사용이 되는 Lithospermum erythrorhizon를 선정하여 추출용매를 변경시킴으로써 용매에 따른 효과 차이를 확인하였다. 실제로 superoxide scavenging activity값을 측정한 결과 용매에 따라 효과 차이가 $10{\sim}80%$ 발생함을 확인함으로써 약용식물 추출하여 사용 시 부위별 또는 추출 용매별로 차이가 있음을 고려하여 제품에 적용시 발생 가능한 오차를 줄여야 한다는 것을 보여주었다.

Keywords

References

  1. P. Ody, Herbal insights: Aclose look at active constituents of medicinal herbs, SOFW journal, 121, 8 (1995)
  2. S. I. Kreydiyyeh and J. Usta, Diuretic effect and machanism of action of action of parsley, J. Ethnopturmacol, 79, 353 (2002) https://doi.org/10.1016/S0378-8741(01)00408-1
  3. P. Cos, L. Ying, M. Calomme, J. P. Hu, K. Cimanga, B. V. Poel, L. Pieters, A. J. Vlitinck, and D. V. Berghe, Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers, J. Nat. Prod, 6, 71 (1998)
  4. N. Emonet, M. T. Leccia, A. Favier, J. C. Beani, and M, J. Richard, Thiols and Selenium : Protective effect on human skin fibroblasts exposed to UVA radiation, J. Photocham Photobiol. b. Biol., 40, 84 (1997) https://doi.org/10.1016/S1011-1344(97)00041-9
  5. D. Harman, Free radical theory of aging: Role of free radicals in the origination and evolution of life, aging and disease processes, Alan R Liss, New York (1986)
  6. O. I. Aruoma, Free radical in tropical diseases. Harwood Academic Publish Co., London (1993)
  7. F. N. Ko, C. H. Liao, Y. H Kuo, and Y. L. Lin, Antioxidant properties of demethyldiisoeugenol, Biochim Biophys. Acta, 1258, 145 (1995) https://doi.org/10.1016/0005-2760(95)00111-O
  8. I. F. Wang and H. Y. Zhang, A theoretical investigation on DPPH radical-scavenging mechanism of edaravone Bioorg, Med Chem Lett., 13, 3789 (2003) https://doi.org/10.1016/j.bmcl.2003.07.016
  9. T. Yokozama, C. P. Chen, E. Dong, T. Tanaka, G. I. Nonaka, and I. Nish-ioka, Study on the inhibitory effect of tannins and flavonoids against the 1,1-diphenyl-picrylhydrazyl radical, Biochem Phumacol, 56, 213 (1998) https://doi.org/10.1016/S0006-2952(98)00128-2
  10. B. S. Berlett and E. R. Stadtman, Protein oxidation in aging, disease, and oxidative stress, J. Biol. Chem, 272, 20313 (1997) https://doi.org/10.1074/jbc.272.33.20313
  11. B. Halliwell and J. M. C. Gutteridge, Oxygen toxicity, oxygen radicals, transition metals and disease, Biochem J., 219, 1 (1984) https://doi.org/10.1042/bj2190001
  12. B. Halliwell and J. M C. Gutteridge, Free radicals in biology and medicine 3rd Edition Oxford University press, Oxford (1999)
  13. R. Radi, J. S. Beckman, K. M. Bush, and B. A. Freeman, Peroxynitrite-induce membrane lipid peroxidation: The cytotoxic potential of superoxide and nitric oxide, Arch Biochem Biophys., 288, 481 (1991) https://doi.org/10.1016/0003-9861(91)90224-7