Synthesis of 3,4-Disubstituted Pyridines Starting from Baylis-Hillman Adducts Using Schweizer Reaction

Mi Jung Lee, Seung Chan Kim, and Jae Nyoung Kim*
Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757, Korea
*E-mail: kimjn@chonnam.ac.kr Received December 4, 2005

Key Words : Pyridines, Baylis-Hillman adducts, Schweizer reaction, Vinyltriphenylphosphonium bromide

Recently, we have reported the facile synthesis of polysubstituted pyridine derivatives from the Baylis-Hillman adducts. ${ }^{1}$ As shown in Scheme 1, the Baylis-Hillman adducts of alkyl vinyl ketone 1a could be converted easily into their tosylamide derivatives 2a. Sequential Michael addition of 2a to the appropriate Michael acceptor, aldol type cyclization, dehydration, elimination of p-toluenesulfinic acid, and the final isomerization afforded polysubstituted pyridines. ${ }^{1}$ In the reaction, compound 2a served threecarbons and one-nitrogen atom for the final pyridine while the Michael acceptor served two-carbon atoms.

In this paper we wish to report the application of another
two-carbon unit, vinyltriphenylphosphonium bromide (3a, Schweizer reagent), ${ }^{2}$ for the synthesis of 3,4 -disubstituted pyridines. Extensive efforts have been devoted to the synthesis of 3,4-disubstituted pyridine derivatives due to their biological importance and the usefulness as synthetic intermediates. ${ }^{3}$

As shown in Scheme 2 and in Table 1, the reaction of 2a and 3a in $\mathrm{CH}_{3} \mathrm{CN}$ in the presence of DBU at $40-50^{\circ} \mathrm{C}$ for 16 h afforded 5a in 72\% yield. Benzylidene derivative 5a must be formed via the successive Michael-Wittig reaction (Schweizer reaction). We could prepare 3-benzyl-4-methylpyridine (6a) from the reaction of $\mathbf{5 a}$ under $\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{DMF}$

Scheme 1

Scheme 2

Table 1. Synthesis of 3,4-disubstituted pyridine derivatives
Entry
${ }^{a} \mathrm{Ar}_{1}$ is 4-methylphenyl and Ar_{2} is 4-chlorophenyl.
$\left(70-80^{\circ} \mathrm{C}, 24 \mathrm{~h}\right)$ conditions in 55% yield via the elimination of p-toluenesulfinic acid and the following $1,3-\mathrm{H}$ shift (entry 1). When we used $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ instead of $\mathrm{K}_{2} \mathrm{CO}_{3}$ at elevated temperature we could obtain $\mathbf{6 a}$ in an improved yield (75\%) in short time (entry 1). Encouraged by the results we prepared 3,4-disubstituted pyridine derivatives $\mathbf{6 b}-\mathbf{f}$ by using similar method and the results are summarized in Table 1.

As shown in Table 1, various kinds of starting materials 2b-f showed similar reactivity to form the corresponding benzylidene compounds $\mathbf{5 b}$-f in moderate yields. The final 3,4-disubstituted pyridine derivatives $\mathbf{6 b}$-f were also synthesized in good yields under the same reaction conditions. However, unfortunately, the use of allyltriphenylphos-
phonium bromide ($\mathbf{3 b}$) in order to synthesize $\mathbf{5 g}$ failed completely (Scheme 3). It was known that $\mathbf{3 b}$ could be isomerized easily into 2 -propenyltriphenylphosphonium bromide in the presence of weak base such as pyridine. ${ }^{2 \mathrm{c}}$ However, the nitrogen atom of 2a did not attack 3b due to its low nucleophilicity. Instead, $\mathbf{3 b}$ must be converted into the corresponding ylide $\mathbf{3} \mathbf{b}$ ' with the aid of relatively strong base, DBU, as reported. ${ }^{4}$ Actually, the reaction mixture of 2a and $\mathbf{3 b}$ showed very complex intractable mixtures on TLC.

In summary, we disclosed the facile synthesis of 3,4disubstituted pyridines starting from the Baylis-Hillman adducts 5 via the sequential introduction of tosylamide, Schweizer reaction with vinyltriphenylphosphonium bromide,

Scheme 3
elimination of p-toluenesulfinic acid, and the final 1,3proton shift process.

Experimental Section

The starting materials $2 \mathbf{a}-\mathbf{c}$ and $\mathbf{2 e}$ were synthesized as reported. ${ }^{1}$ Compound $2 \mathbf{d}$ and $2 \mathbf{f}$ were prepared analogously in moderate yields. ${ }^{1}$

Compound 2d: 71%; white solid, mp $106-107{ }^{\circ} \mathrm{C}$; IR (film) $3278,1662,1331,1161 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 1.08(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$, 2.68 (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.24(\mathrm{t}, J=$ $6.6 \mathrm{~Hz}, \mathrm{NH}, 1 \mathrm{H}), 7.24$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.27 (d, $J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 8.32,21.41$, $21.48,30.21,40.37,127.22,129.57,129.60,129.69,131.04$, 134.41, 136.51, 140.10, 143.06, 143.32, 203.10.

Compound 2f: 60%; white solid, mp $120-121^{\circ} \mathrm{C}$; IR (film) $3275,1666,1327,1161 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $1.10(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.82(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.22(\mathrm{t}, J=6.6 \mathrm{~Hz}, \mathrm{NH}, 1 \mathrm{H})$, $7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~s}, 4 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 8.22,21.49$, 30.31, 40.20, 127.21, 129.11, 129.68, 130.89, 132.32, 135.70, 135.78, 136.28, 141.40, 143.53, 202.85.

Typical procedure for the synthesis of 3-benzyl-4methylpyridine (6a): To a stirred solution of $\mathbf{2 a}$ (658 mg , 2.0 mmol) and vinyltriphenylphosphonium bromide (3a, $960 \mathrm{mg}, 2.6 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ was added DBU (912 $\mathrm{mg}, 6.0 \mathrm{mmol}$) and the reaction mixture was heated to $40-50$ ${ }^{\circ} \mathrm{C}$ for 16 h . After the usual workup and column chromatographic purification process (hexanes/ether, 7:1) we obtained 5a as a white solid, $489 \mathrm{mg}(72 \%)$. A solution of $\mathbf{5 a}$ (339 $\mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(978 \mathrm{mg}, 3.0 \mathrm{mmol})$ in DMF (5 mL) was heated to $120-130{ }^{\circ} \mathrm{C}$ for 2 h . After the usual workup and column chromatographic purification process (hexanes/EtOAc, $4: 1$) we obtained $\mathbf{6 a}$ as clear oil, 138 mg (75%). The other compounds $\mathbf{5 b}$-f and $\mathbf{6 b}$-f were synthesized analogously and the spectroscopic data are as follows.
Compound 5a: 72\%; white solid, mp 113-114 ${ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) 1343,1165 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.78$ (d, $J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 3.79-3.81(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{~d}$, $J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.56(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 7.15-$ $7.39(\mathrm{~m}, 7 \mathrm{H}), 7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$
$\mathrm{MHz}) \delta 19.09,21.35,44.80,45.27,122.07,125.43,127.03$, 127.61, 128.32, 128.86, 129.28, 131.72, 132.51, 133.82, 136.22, 143.32.

Compound 5b: 57\%; white solid, mp 74-76 ${ }^{\circ} \mathrm{C}$; IR (KBr) $1346,1161 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.98(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.18(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 3.85-3.86$ $(\mathrm{m}, 2 \mathrm{H}), 4.13(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.55(\mathrm{t}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.50(\mathrm{~s}, 1 \mathrm{H}), 7.16-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.35-$ $7.40(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.57(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 12.74,21.41,24.87,44.94,45.47,120.29,124.91$, $127.08,127.69,128.40,128.94,129.33,130.69,134.09$, 136.38, 137.98, 143.35.

Compound 5c: 75%; white solid, mp $141-142{ }^{\circ} \mathrm{C}$; IR (film) $1454,1346,1165 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 1.78(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}), 4.13$ $(\mathrm{s}, 2 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, 7.18 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 19.18,21.15$, $21.43,44.93,45.33,121.67,125.53,127.71,128.86,129.12$, $129.31,131.16,132.68,133.38,133.96,136.91,143.30$.
Compound 5d: 66%; white solid, mp $122-124{ }^{\circ} \mathrm{C}$; IR (KBr) $1454,1346,1165 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 0.97(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.17(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}$, $3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 2 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 5.53(\mathrm{~s}, 1 \mathrm{H})$, $6.47(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 12.78,21.17,21.43,24.90,45.01$, $45.48,119.86,124.93,127.71,128.88,129.13,129.31$, 130.06, 133.46, 134.11, 136.90, 138.07, 143.30.

Compound 5e: 69%; white solid, mp 93-95 ${ }^{\circ} \mathrm{C}$; IR (KBr) $1597,1489,1346,1165 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $1.80(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 2 \mathrm{H}), 5.60(\mathrm{~s}$, $1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 19.11,21.44,44.70,45.30$, 122.59, 124.17, 127.64, 128.58, 129.39, 130.18, 132.39, 132.48, 132.88, 133.69, 134.75, 143.49; ESIMS (m/z) 354 $\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

Compound 5f: 53\%; white solid, mp 93-95 ${ }^{\circ} \mathrm{C}$; IR (KBr) $1489,1346,1161 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.99$ (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.19(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$, $3.85(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 2 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$
12.73, 21.48, 24.86, 44.84, 45.50, 120.81, 123.63, 127.73, $128.67,129.43,130.25,131.52,132.99,134.01,134.88$, 137.85, 143.50.

Compound $\mathbf{6 a}^{6}$: 75\%; clear oil; IR (KBr) 2924, 1593, $1493,1450 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.20(\mathrm{~s}$, $3 \mathrm{H}), 3.99(\mathrm{~s}, 2 \mathrm{H}), 7.06-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.30(\mathrm{~m}, 3 \mathrm{H})$, 8.37 (br s, 2H); ESIMS (m / z) 184 ($\mathrm{M}^{+}+\mathrm{H}$).

Compound 6b: 71\%; clear oil; IR (KBr) 2970, 1666, 1593, $1493 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.12(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}), 2.56(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.01$ (s, 2H), 7.08-7.30 (m, $6 \mathrm{H}), 8.36(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 13.43,24.93,36.12,123.11,126.25$, $128.45,128.50,133.86,139.58,148.22,150.91,151.31$; ESIMS (m / z) $198\left(\mathrm{M}^{+}+\mathrm{H}\right)$.
Compound 6c: 81\%; clear oil; IR (film) 1658, 1593, 1512 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}$, $3 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.35(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.36(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 19.00,20.89$, $36.15,125.25,128.31,129.15,134.80,135.72,135.96$, 145.82, 147.85, 150.48; ESIMS (m / z) 198 ($\mathrm{M}^{+}+\mathrm{H}$).

Compound 6d: 73\%; clear oil; IR (film) 2970, 1593, 1512, $1408 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.12(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 2 \mathrm{H})$, 6.98 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J$ $=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 13.39,20.88,24.86,35.64$, 123.01, 128.27, 129.13, 134.04, 135.69, 136.43, 148.11, 150.84, 151.18; ESIMS (m / z) $212\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

Compound 6e: 70\%; clear oil; IR (film) 1593, 1493, 1408, $1092 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.18(\mathrm{~s}, 3 \mathrm{H}), 3.94$ (s, 2H), 7.03 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.07$ (d, $J=4.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.23 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 8.35 (s, 1H), 8.38 (d, $J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 18.97,35.94,125.37$, $128.60,129.73,132.05,134.04,137.56,145.79,148.21$, 150.47; ESIMS (m / z) $218\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

Compound 6f: 74\%; clear oil; IR (film) 2970, 1593, 1489, $1408 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.13(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}), 2.54(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
$\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 13.41,24.90,35.49,123.18,128.62$, 129.73, 132.08, 133.35, 138.07, 148.47, 150.81, 151.26; ESIMS (m / z) $232\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

Acknowledgments. This work was supported by the grant (R-05-2003-000-10042-0) from the Basic Research Program of the Korea Science and Engineering Foundation (Now controlled under the authority of Korea Research Foundation). Spectroscopic data was obtained from the Korea Basic Science Institute, Gwangju branch.

References and Notes

1. Park, D. Y.; Lee, M. J.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2005, 46, 8799 and this paper was selected as a cover feature of Tetrahedron Lett. Volume 46, Issue 50.
2. For the synthetic applications of Schweizer reagent in organic synthesis, see (a) Meyers, A. I.; Lawson, J. P.; Carver, D. R. J. Org. Chem. 1981, 46, 3119. (b) Schweizer, E. E.; Liehr, J.; Monaco, D. J. J. Org. Chem. 1968, 33, 2416. (c) McIntosh, J. M.; Goodbrand, H. B.; Masse, G. M. J. Org. Chem. 1974, 39, 202. (d) Clerici, F.; Gelmi, M. L.; Trimarco, P. Tetrahedron 1998, 54, 5763. (e) Shen, Y.; Yao, J. J. Org. Chem. 1996, 61, 8659. (e) Fan, R.-H.; Hou, X.-L.; Dai, L.-X. J. Org. Chem. 2004, 69, 689. (f) Karatholuvhu, M. S.; Fuchs, P. L. J. Am. Chem. Soc. 2004, 126, 14314.
3. (a) Karig, G.; Thasana, N.; Gallagher, T. Synlett 2002, 808. (b) Karig, G.; Spencer, J. A.; Gallagher, T. Org. Lett. 2001, 3, 835. (c) Donohoe, T. J.; Mace, L.; Helliwell, M.; Ichihara, O. Synlett 2002, 331. (d) Tsuge, O.; Kanemasa, S.; Naritomi, T.; Tanaka, J. Bull. Chem. Soc. Jpn. 1987, 60, 1497. (e) Pridgen, L. N. J. Heterocyclic Chem. 1975, 12, 443. (f) Marsais, F.; Trecourt, F.; Breant, P.; Queguiner, G. J. Heterocyclic Chem. 1988, 25, 81. (g) Marsais, F.; Queguiner, G. Tetrahedron 1983, 39, 2009. (h) Turner, J. A. J. Org. Chem. 1983, 48, 3401.
4. Vedejs, E.; Bershas, J. P.; Fuchs, P. L. J. Org. Chem. 1973, 38, 3625.
5. For our recent publications on the chemical transformations of Baylis-Hillman adducts, see (a) Gowrisankar, S.; Lee, K. Y.; Kim, J. N. Tetrahedron Lett. 2005, 46, 4859. (b) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Tetrahedron Lett. 2005, 46, 5387. (c) Lee, C. G.; Lee, K. Y.; Lee, S.; Kim, J. N. Tetrahedron 2005, 61, 1493. (d) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1481 and further references cited therein.
6. (a) Tsuge, O.; Kanemasa, S.; Naritomi, T.; Tanaka, J. Bull. Chem. Soc. Jpn. 1987, 60, 1497. (b) Pridgen, L. N. J. Heterocyclic Chem. 1975, 12, 443.
