DOI QR코드

DOI QR Code

Interpretation of Protein Feed Degradation Pattern in Ruminant Using an Omasal Digesta Sampling Technique

제 3위 소화액 채취기법을 이용한 반추위 단백질 사료 분해 패턴 측정법의 고찰

  • Published : 2006.08.31

Abstract

Present review is to introduce an omasal sampling technique in rumen proteolysis and to consider some information on the omasal sampling technique with particular emphasis on methodological aspects. Use of the omasal sampling technique provides a new opportunity for accurate estimation of rumen metabolism with overcoming limitations of previous in vivo, in vitro and/or in situ methods. The potential advantages of the present technique compared with post-ruminal sampling techniques include following points; 1) only rumen cannulated animals are required, 2) less endogenous nitrogen (N) is contaminated in omasal digesta and 3) omasal digesta are devoid of exposure to acid peptide hydrolysis occurring in the abomasum. Estimates of soluble non-ammonia N (SNAN) in omasal digesta indicate that the assumptions underlying the in situ method that rapidly degradable N fraction can be degraded at an infinite rate and only insoluble dietary N escapes the rumen may be not valid. Quatitatively higher peptide concentration rather than free amino acid and soluble protein in escapable SNAN suggests that hydrolysis of peptide to amino acid may be the rate-limiting step in rumen proteolysis.

제 3위 소화액 채취기법은 기존 반추위 영양생리 대사 패턴 측정방법인 in vivo, in vitro 및 in situ 방법의 단점을 극복하고 정확한 반추위 생리대사 패턴의 측정을 할 수 있는 기회를 가진다. 이 제 3위 소화액 채취기법을 이용한 측정방법은 기존의 post-ruminal sampling 기법과 비교해서 다음과 같은 장점들이 존재한다. 1) 단지 반추위캐뉼라가 설치된 동물만이 필요하며, 2) 제 3위 소화액에는 비교적 적은 내인성 질소가 존재하며, 3) 제 3위 소화액은 제 4위에서 시작되는 소화효소에 의한 소화를 피할 수 있는 점 등이다. 제 3위 소화액 내 반추위 미분해 용해성 질소화합물(SNAN)의 측정은 in situ 방법의 전제조건인 반추위에서 rapidly degradable N은 무한정 분해되며 따라서 비용해성 사료 N 만이 반추위를 벗어난다는 것이 오류임을 보여준다. 제 3위 소화액 내 SNAN 중 유리아미노산 및 용해성 단백질과 비교해서 양적으로 가장 많은 peptide는 반추위 단백질대사에서 peptide에서 아미노산으로의 분해과정이 분해율 제한요인이 될 수 있음을 시사한다.

Keywords

References

  1. Ahvenjarvi, S., Vanhatalo, A., Huhtanen, P. and Varvikko, T. 1999. Effects of supplementation of a grass silage and barley diet with urea, rapeseed meal and heat-moisture-treated rapeseed cake on omasal digesta flow and milk production in lactating dairy cows. Acta Agric. Scand., Sect. A. Animal Sci. 49: 179-189
  2. Broderick, G. A 1987. Determination of protein degradation rates using a rumen in vitro system containing inhibitors of microbial nitrogen metabolism. Br. J. Nutr. 58:463-475 https://doi.org/10.1079/BJN19870114
  3. Broderick, G. A and Merchen, N. R 1992. Markers for quantifying microbial protein synthesis in the rumen. J. Dairy Sci. 75:2618-2632 https://doi.org/10.3168/jds.S0022-0302(92)78024-2
  4. Broderick, G. A, Wallace, R. J. and Orskov, E. R. 1991. Control of rate and extent of protein degradation. In Physiological Aspects of Digestion and Metabolism in Rumninants. Tsuda, T., Sasaki, Y. and Kawashima, R.(Eds.) Academic Press, Tokyo, Japan. pp. 541-592
  5. Chen, G., Russell, J. B. and Sniffen, C. J. 1987a. A procedure for measuring peptides in rumen fluid and evidence that peptide uptake can be a rate-limiting step in ruminal protein degradation. J. Dairy Sci. 70, 1211-1219 https://doi.org/10.3168/jds.S0022-0302(87)80133-9
  6. Chen, Go, Sniffen, C. J. and Russell. J. B. 1987b. Concentration and estimated flow of peptides from the rumen of dairy cattle. Effects of protein quantity, protein solubility, and feeding frequency. J. Dairy. Sci. 70: 983-992 https://doi.org/10.3168/jds.S0022-0302(87)80103-0
  7. Choi, C. W. 2002. Assessment of the flow of soluble dietary non-ammonia nitrogen escaping degradation in the rumen of dairy cows fed grass silage based diets. Ph.D. Dissertation, Deparment of Animal Science Publications No. 66. University of Helsinki. ISBN 952-10-0855-5(nid.). 60 p. + 4 publ
  8. Choi, C. W., Ahvenjarvi, S., Vanhatalo, A., Toivonen, V. and Huhtanen, P. 2002a. Quantitation of the flow of soluble non-ammonia nitrogen entering the omasal canal of dairy cows fed grass silage based diets. Anim. Feed Sci. Technol. 96:203-220 https://doi.org/10.1016/S0377-8401(01)00348-0
  9. Choi, C. W., Vanhatalo, A., Ahvenjarvi, S. and Huhtanen, P. 2002b. Effects of several protein supplements on flow of soluble non-ammonia nitrogen from the forestomach and milk production in dairy cows. Anim. Feed Sci. Technol. 102: 1533
  10. Choi, C. W., Vauhatalo, A. and Huhtanen, P. 2002c. Concentration and estimated flow of soluble non-ammonia nitrogen entering the omasum of dairy cows as influenced by different protein supplements. Agric. Food Sci. Finl. 11:79-91
  11. Choi, C. W., Vanhatalo, A. and Huhtanen, P. 2003. Effects of type of grass silage and level of concentrate on the flow of soluble non-ammonia nitrogen entering the omasum of dairy cows. J. Anim. Feed. Sci. 12:3-22 https://doi.org/10.22358/jafs/67639/2003
  12. Crooker, B. A., Sniffen, C. J., Hoover, W. H. and Johnson, L. L. 1978. Solvents for soluble nitrogen measurements. J. Dairy Sci. 61 :437-447 https://doi.org/10.3168/jds.S0022-0302(78)83618-2
  13. Dhanoa, M. S., France, J., Lopez, S., Dijkstra, J., Lister, S. J., Davies, D. R. and Bannink, A. 1999. Correcting the calculation of extent of degradation to account for particulate matter loss at zero time when applying the polyester bag method. J. Anim. Sci. 77:3385-3391
  14. Firkins, J. L., Berger, L. L., Merchen, N. R., Fahey Jr. G. C. and Mulvaney, R. L. 1987. Ruminal nitrogen metabolism in steers as affected by feed intake and dietary urea concentration. J. Dairy Sci. 70:2302-2311 https://doi.org/10.3168/jds.S0022-0302(87)80290-4
  15. France, J. and Siddons, R. C. 1986. Determination of digesta flow by continuous marker infusion. J. Theor. Biol. 121: 105-119 https://doi.org/10.1016/S0022-5193(86)80031-5
  16. Hristov, A. and Broderick, G. A. 1994. In vitro determination of ruminal protein degradability using [^{15}N] ammonia to correct for microbial nitrogen uptake. J. Anim. Sci. 72: 1344-1354
  17. Hristov, A. and Broderick, G. A. 1996. Synthesis of microbial protein in ruminally cannulated cows fed alfalfa silage, alfalfa hay or com silage. J. Dairy Sci. 79:1627-1637 https://doi.org/10.3168/jds.S0022-0302(96)76526-8
  18. Huhtanen, P., Brotz, P. G. and Satter, L. D. 1997. Omasal sampling technique for assessing fermentative digestion in the forestomach of dairy cows. J. Anim. Sci. 75:1380-1392
  19. Huhtancn, P., Vanhatalo, A. and Varvikko, T. 1998. Enzyme activities of rumen particles and feed samples incubated in situ with differing types of cloth. Br. J. Nutr. 79:161-168 https://doi.org/10.1079/BJN19980027
  20. Lindberg. J. E. 1985. Estimation of rumen degradability of feed proteins with the in sacco technique and various in vitro methods: a review. Acta Agric. Scand.. 25 (Suppl). 64-97
  21. Licitra. G.. Hernandez. T. M. and Van Soest, P. J 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 57:347-358 https://doi.org/10.1016/0377-8401(95)00837-3
  22. Luchini. N. D.. Broderick. G. A. and Combs. D. K. 1996. Characterization of the proteolytic activity of commercial proteases and strained ruminal fluid. J. Anim Sci. 74:685-692 https://doi.org/10.2527/1996.743685x
  23. Mahadevan. S.. Erfle. J. D. and Sauer. F. D. 1987. Preparation of protease from mixed rumen microorganismsand its use for the III vitro determination of the degradability of true protein in feedstuffs. Can. J. Anim. Sci. 67:55-64 https://doi.org/10.4141/cjas87-007
  24. Michalct-Dorcau, B. and Ould-Bah. M. Y. 1992. In vitro and in sacco methods for the estimation of dietary nitrogen degradability in the rumen: a review. Anim. Feed Sci. Technol. 40:57-86 https://doi.org/10.1016/0377-8401(92)90112-J
  25. Nocek, J. E. 1988. In situ and other methods to estimate ruminal protein and energy digestibility: a review J. Dairy Sci. 71:2051-2069 https://doi.org/10.3168/jds.S0022-0302(88)79781-7
  26. Nolan. J. V. 1993. Nitrogen Kinetics. In Quantitative aspects of ruminant digetion and metabolism. J. M. Forbes and J. France (Eds.) CAB International Wallingford. Oxon, UK. pp. 123-141
  27. NRC. 2001. National Research Council. Nutrient Requirement of Dairy Cattle. 7th rev. ed. National Acadamy Press. Washington. D.C. USA
  28. Nsereko, V. I., Rooke. J. A.. Newbold. C. J. and Wallace. R. J. 1998. Influence of protease inhibitors on nitrogen distribution In ensiled perennial ryegrass and utilisation of silage nitrogen for growth by rumen bacteria in vitro. Anim. Feed Sci. Technol. 76:51-63 https://doi.org/10.1016/S0377-8401(98)00211-9
  29. Orskov. E. R. and McDonald. P. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci.. Camb. 92: 499-503 https://doi.org/10.1017/S0021859600063048
  30. Orskov, E. R.. Macleod. N. A. and Kyle. D. J. 1986. Flow of nitrogen from the rumen and abomasum in cattle and sheep given protein-free nutrients by intragastric infusion. Br. J. Nutr. 56: 241-248 https://doi.org/10.1079/BJN19860103
  31. Robinson. P. H. and McQueen. R. E. 1994. Influence of supplemental protein source and feeding frequency on rumen fermentation and performance in dairy cows. J. Dairy Sci. 77: 1340-1353 https://doi.org/10.3168/jds.S0022-0302(94)77073-9
  32. Robinson. P. H.. Veira, D. M. and Ivan, M. 1998. Influence of supplemental protein quality on rumen fermentation, rumen microbial yield, forestomach digestion. and intestinal amino acid flow in late lactation Holstein cows. Can. J. Anim. Sci. 78: 95-105 https://doi.org/10.4141/A97-054
  33. Rosen. H. 1957. A modified ninhydrin colorimetric analysis for amino acids. Arch. Biochem. Biophys. 67: 10-15 https://doi.org/10.1016/0003-9861(57)90241-2
  34. Siddons. R. C. Beever, D. E. and Nolan, J. V. 1982. A comparison of methods for the estimation of microbial nitrogen in duodenal digesta of sheep. Br. J. Nutr. 48:377-389 https://doi.org/10.1079/BJN19820121
  35. Sniffen. C. J., O'Connor, J. D., Van Soest, P. J.. Fox. D. G. and Russell. J. B. 1992. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 70:3562-3577 https://doi.org/10.2527/1992.70113562x
  36. Uden. P.. Colucci. P. E. and Van Soest, P. J. 1980. Investigation of chromium. cerium and cobalt as markers in digesta. Rate of passage studies. J. Sci. Food Agric. 31 :625-632 https://doi.org/10.1002/jsfa.2740310702
  37. Uden, P. 2000. Ruminal metabolism of buffer-soluble proteins. peptides and amino acids in vitro. In Modelling Nutrient Utilization in Farm Animals. J.P. McNamara. J. France and D.E. Beever. (Eds.) CABI Publishing, Oxon, UK. pp. 63-71
  38. Van Straalen, W. M. and Tamminga, S. 1990. Protein degradation of ruminant diets. In Feedstuff evaluation. I. Livestock. Feedingstuffs. Composition. J. Wiseman and D.J.A. Cole. (Eds.) Butterworths. London. pp. 55-72
  39. Varvikko. T. and Lindberg. J. E. 1985. Estimation of microbial nitrogen in nylon-bag residues by feed $^{15}N$ dilution. Br. J. Nutr. 54:473-481 https://doi.org/10.1079/BJN19850132
  40. Volden. H. and Harstad. O. M. 1995. Effect of rumen incubation on the true indigestibility of feed protein in the digestive tract determined by nylon bag techniques. Acta Agric. Scand., Sect A. Animal Sci. 45:106-115
  41. Volden. H.. Mydland. L. T. and Olaisen, V. 2002. Apparent ruminal degradation and rumen escape of soluble nitrogen fractions in grass silage administered intraruminally to lactating dairy cows. J. Anim. Sci. 80:2704-2716
  42. Volden. H.. Velle. W.. Harstad. O. M.. Aulie. A. and Sjaastad. O. V. 1998. Apparent ruminal degradation and rumen escape of lysine, methioinc, and theronine administered intraruminally in mixtures to high-yielding cows. J. Anim. Sci. 76: 1232-1240
  43. Wallace. R. J. 1991. Rumen proteolysis and its control. In Rumen microbial metabolism and ruminant digestion. J. P. Jouany (Ed.) INRA Editions. Paris. pp. 131-150
  44. Wright. D. E. and Hungate, R. E. 1967. Amino acid concentrations in rumen fluid. Appl. Microbiol. 15: 148-151