DOI QR코드

DOI QR Code

Hybridal Method for the Prediction of Wave Instabilities Inherent in High Energy-Density Combustors (2): Cumulative Effects of Pressure Coupled Responses on Cavity Acoustics


초록

Theoretical-numerical approach of combustion instability in a specific rocket engine is conducted with parametric response functions. Fluctuating instantaneous burning rate is assumed to be functionally coupled with acoustic pressures and have a finite or time-varying amplitudes and phase lags. Only when the amplitudes and phases of combustion response function are sufficiently large and small respectively, the triggered unstable waves are amplified.

키워드

참고문헌

  1. G.Y. Lee and W.S. Yoon, 2000, 'High Frequency Wave Instability and Combustion Responses', AIAA-2000-3296
  2. W.S. Yoon and G..Y. Lee, 2001, 'Direct Prediction of Unstable Waves in Combustion Chamber', AIAA-2001-3848
  3. G.Y. Lee and W.S. Yoon, 2002, 'Direct Prediction of Liquid Rocket Combustion Instabilities with Emphasis Placed on Velocity- and Pressure-Coupled Reponses', AIAA-2002-3698
  4. Priem, R., and Heidmann, M., 1960, 'Propellant Vaporization at a Design Criterion for Rocket-Engine Combustion Chambers', Tech. Rept., NASA TR-67
  5. Culick, F.E.C., 1988, 'Combustion Instabilities in Liquid-Fueled Propulsion System-An Overview', AGARD Conference Proceedings No. 450
  6. Habiballah, M., and Dubois, I., 1993, 'Numerical Analysis of Engine Instability', First International Symposium on Liquid Rocket Combustion Instability, Pennsylvania State Univ., University Park, PA, Jan. 18-20
  7. Culick, F.E.C., and Yang, V., 1992, 'Prediction on the Stability of Unsteady Motions in Solid-Propellant Rocket Motors', Nonsteady Burning and Combustion Stability of Solid Propellants, edited by L. DeLuca, E.W. Price, and M. Summerfield, Vol. 143, Progress in Astronautics and Aeronautics, AIAA, Washington, DC, pp. 719-779
  8. Priem, R.J., and Guentert, DC, 1962, 'Combustion Instability Limits Determined by a Nonlinear Theory and a One-Dimensional Model', NASA-TN-D-1409
  9. Nickerson, G.R., Culick, F.E.C., and Dang, L.G., 1983, 'Standard Stability Prediction Method for Solid Rocket Motors', Software and Engineering Associates, IDC, AFRPL TR-83-017, Carson City, NV
  10. Liang, P., and Ungewitter, R., 1992, 'Multi-Phase Simulations of Coaxial Injector Combustion', 30th Aerospace Sciences Meeting, AIAA Paper 92-0345, Reno, NV
  11. Heidmann, M.F., and Wieber, P.R., 1966, 'Analysis of n-Heptane Vaporization in Unstable Combustor with Traveling Transverse Oscillation', NASA TN D-3424
  12. Crocco, L, Harrje, D.T., and Sirignano, W.A. et al., 1967, 'Nonlinear Aspects of Combustion Instability in Liquid Propellant Rocket Motors', Princeton University, NASA CR 72270
  13. Dykema, O.W., 1965, 'An Engineering Approach to Combustion Instability', Aerospace Corp. Rept. No. TDR-669(6126-22)-1
  14. Strahle, W.C., 1965, 'Unsteady Laminar Jet Flame at Large Frequencies of Oscillation', AIAA J. Vol. 3, No.5, p. 957 https://doi.org/10.2514/3.3024
  15. Williams, F.A., 1965, 'Response of a Burning Fuel Plate to Sound Vibration', AIAA J. Vol. 3, p. 2112 https://doi.org/10.2514/3.3323
  16. Shuen, J.S., Yang, V., and Hsiao, C.C., 1992, 'Combustion of Liquid-Fuel Droplets in Supercritical Conditions', Combustion and Flame, Vol. 89, pp. 299 https://doi.org/10.1016/0010-2180(92)90017-J
  17. Hsieh, K.C., Shuen, J.S., and Yang, V., 1991, 'Droplet Vaporization in High-Pressure Environments. I : Near Critical Conditions', Comb. Sci. and Tech, Vol. 76, pp. 111-13 https://doi.org/10.1080/00102209108951705
  18. Hsiao, G.c., 1995, 'Supercritical Droplet Vaporization and Combustion in Quiescent and Forced-Convective Environments', Ph.D, Thesis, The Pennsylvania State University, University Park, PA
  19. Lafon, P., Yang, V., and Habiballah, M., 1995, AIAA paper 95-2432
  20. Culick, F.E.C., 1987, 'A Note on Rayleigh's Criterion', Combustion Science and Technology, Vol. 56, pp. 159-166 https://doi.org/10.1080/00102208708947087