DOI QR코드

DOI QR Code

Genetic Comparison Between Crucian Carp (Carassius auratus Linnaeus) and Crucian Carp (C. cuvieri Temminck and Schlegel)

붕어(Carassius auratus Linnaeus)와 떡붕어(C. cuvieri Temminck and Schlegel)의 유전적 비교

  • Published : 2006.10.31

Abstract

Genomic DNA isolated from two crucian carp species obtained from Yesan (Carassius auratus) and Dangjin (Carassius cuvieri) in Korea were amplified at several times by polymerase chain reaction (PCR). The amplified products were separated by agarose gel electrophoresis (AGE) with oligonucleotides decamer primer and stained with ethidium bromide. The seven arbitrarily selected primers OPC-11, OPC-14, OPC-18, OPD- 02, OPD-11, OPD-15 and OPD-20 generated the shared loci by each species, the polymorphic and specific loci. The seven primers generated the total 458 loci that can be scored from the crucian carp obtained in C. auratus species. 358 fragments were generated from the species obtained in C. cuvieri species. The size of DNA fragments varies from 150 to 1,600bp. The complexity of the banding patterns varies dramatically between the primers and two locations. In this study, 458 loci were identified in the crucian carp species from Yesan and 358 in the crucian carp species from Dangjin: 84 polymorphic loci (18.3%) in the C. auratus species and 48 (13.4%) in the C. cuvieri species. 154 shared loci by each species, the average 22 per primer, were observed in the C. auratus species and 187 loci, the average 26.7 per primer, in the Dangjin species. Based on the average bandsharing (BS) values of all samples, the similarity matrix ranged from 0.434 to 0.868 in the C. auratus species and from 0.449 to 0.924 in the C. cuvieri species. The average BS value was 0.641±0.013 within the C. auratus species and 0.684±0.013 within the C. cuvieri species. The average BS value between two crucian carp species 0.484 ± 0.007, ranged from 0.307 to 0.682. The BS value between the individual No. 09 and No. 16 was 0.682, which was the highest between two crucian carp species. Compared separately, the BS value of individuals within the C. cuvieri species was higher than the C. auratus species. The dendrogram obtained by the seven primers, indicates three genetic clusters: cluster 1 (AURATUS No. 01, 02, 03, 04, 05, 06, 07, 08, 09, 10 and 11), cluster 2 (CUVIERI No. 12, 13, 14, 15, 16, 17, 18, 19, 20 and 21) and cluster 3 (CUVIERI no. 22). The shortest genetic distance displaying significant molecular difference was between the individual AURATUS No. 09 and AURATUS No. 08 from Yesan (genetic distance=0.064). The longest genetic distance displaying significant molecular differences was between the individual CUVIERI No. 17 and AURATUS No. 11 between two crucian carp species (0.477). RAPD-PCR analysis has revealed the significant genetic distance between two crucian carp species pairs.(Key words: Carassius auratus, Carassius cuvieri, Crucian Carp, DNA Polymorphism, Genetic Distance)

한국의 예산과 당진에서 각각 채취된 붕어 (Carassius auratus)와 떡붕어 (Carassius cuvieri)로부터 genomic DNA를 분리 추출하여 반복해서 PCR로 증폭시켰다. 선택된 7개의 RAPD primer를 이용하여 primer 당 total loci, shared loci by each species, polymorphic 및 specific loci를 얻어냈다. 2종의 붕어로부터 primer와 2지역간에 banding patterns의 복잡성이 두드러지게 나타났다. DNA fragment의 분자적 크기는 150bp에서부터 1,600bp까지 커다란 차이를 나타내었다. 본 연구에서 CCY 붕어 종에서는 458개의 loci가 나타났고, CCD 떡붕어 종에서는 358개의 loci가 확인되었다. 또한 CCY 붕어 종에서는 84개의 polymorphic loci (18.3%)가 확인되었고, CCD떡붕어 종에서는 48개의 polymorphic loci (13.4%)가 확인되었다. CCY 붕어 종에서는 154개의 shared loci가 나타났으며, 이는 primer당 평균적으로 22개의 loci로 확인되었다. 또한 CCD떡붕어 종에서는 187개의 shared loci가 확인되었고, 평균해서 primer 당 26.7개의 loci가 나타났다. CCY붕어 종과 CCD 떡붕어 종의 polymorphic loci는 각각 84개와 48개로 확인되었다. 모든 붕어와 떡붕어 시료의 평균적인 BS value를 기초로 해서 CCY 붕어 종의 similarity matrix를 조사해 본 결과 0.434로부터 0.868까지 나타났고, CCD 떡붕어 종의 값은 0.449로부터 0.924까지 확인되었다. CCY 붕어 종내의 평균적인 BS value는 0.641±0.013이고, CCD 떡붕어 종내의 BS value의 평균값은 0.684±0.013을 나타내었다. 결과적으로 CCD 떡붕어 종내의 개체의 BS value 평균값이 CCY 붕어 종내의 평균값보다 높게 나타났다. 2 붕어와 떡붕어간의 평균적인 BS value은 0.484±0.007 (0.307~0.682)를 나타내었다. 7개의 primer를 사용하여 얻어진 dendrogram은 cluster 1 (AURATUS no. 01~AURATUS no. 11), cluster 2 (CUVIERI no. 12~CUVIERI no. 21) 및cluster 3 (CUVIERI no. 22)와 같이 3개의 유전적 클러스터로 나뉘어졌다. CCY 붕어 종내의 8번째 개체 (AURATUS no. 08)와 9번째 개체 (AURATUS no. 09) 사이가 가장 가까운 유전적 관계 (0.064)를 나타내었다. 또한 CCY붕어 종의 11번째(AURATUS no. 11)와 CCD떡붕어 종의 17번째 (CUVIERI no. 17) 사이가 가장 먼 유전적 거리 (0.477)를 나타내었다. 결과적으로 볼 때 한국 및 대서양산 lobster (0.612), 갈치 (0.708), 동자개(0.714)에 비해서 상대적으로 낮은 유전적 거리를 나타내었다.

Keywords

References

  1. Bernardi, G. and Talley, D. 2000. Genetic evidence for limited dispersal in the coastal California killifish, Fundulus parvipinnis. J. Exp. Mar. Biol. Ecol. 255:187-199 https://doi.org/10.1016/S0022-0981(00)00298-7
  2. Bommineni, V. R., Jauhar, P. P., Peterson, T. S., Chibbar, R. N. and Almouslem, A. B. 1997. Analysis of hybrids of wheat with Thinopyrum juncelforme using RAPD markers. Theor. Appl. Genet. 95:757-763 https://doi.org/10.1007/s001220050622
  3. Callejas, C. and Ochando, M. D. 1998. Identification of Spanish barbel species using the RAPD technique. J. Biol. 53:208-215
  4. Chenyambuga, S. W., Hanotte, O., Hirbo, J., Watts, P. C., Kemp, S, J., Kifaro, G. C., Gwakisa, P. S., Petersen, P. H. and Rege, J. E. O. 2004. Genetic characterization of indigenous goats of sub-Saharan Africa using microsatellite DNA markers. Asian-Aust, J. Anim. Sci. 17:445-452
  5. Diaz-Jaimes, P. and Uribe-Alcocer, M. 2003. Allozyme and RAPD variation in the eastern Pacific yellowfin tuna (Thunnus albacares). Fish. Bull. 101:769-777
  6. Geng, S. M., Shen, W., Qin, G. Q., Wang, X, Hu, S. R., Wang, Q. and Zhang, J. Q. 2002. DNA fingerprint polymorphism of 3-goat populations from China Chaidamu Basin. Asian-Aust. J. Anim. Sci. 15:1076-1079 https://doi.org/10.5713/ajas.2002.1076
  7. Gwakisa, P. S., Kemp, S. J. and Teale, A. J. 1994. Characterization of zebu cattle breeds in Tanzania using random polymorphic DNA markers. Anim. Genet. 25:89-94 https://doi.org/10.1111/j.1365-2052.1994.tb00085.x
  8. Huang, B. X., Peakall, R. and Hanna, P. J. 2000. Analysis of genetic structure of blacklip abalone (Haliotis rubra) using RAPD, minisatellite and microsatellite markers. Mar. Biol, 136:207-216 https://doi.org/10.1007/s002270050678
  9. Hwang, J. S., Lee, J. S., Kang, H. A., Lee, S. M. and Suh, D. S. 1995. Analysis of genetic relationships among the silkworm, Bombyx mori, strains using RAPD-PCR Korean J. Genet. 17:291-300
  10. Islam, M. S., Ahmed, A. S. I., Azam, M. S. and Alam, M. S. 2005. Genetic analysis of three river populations of Catla catla (HAMILTON) using randomly amplified polymorphic DNAs markers. Asian-Aust. J. Anim. Sci. 18:453-457 https://doi.org/10.5713/ajas.2005.453
  11. Iyengar, A., Piyapattanakorn, S., Dtone, D. M., Heipel, D. A., Howell, B. R., Baynes, S. M. and Maclean, N. 2000. Identification of microsatellite repeats in turbot (Scophthalmus maximus) and dover sole (Solea solea) using a RAPD-based technique: Characterization of microsatellite markers in dover sole. Mar. Biotechnol. 2:49-56
  12. Jaiswal, P., Sane, A. P., Ranade, S. A., Nath, P. and Sane, P. V. 1998. Mitochondrial and total RAPD patterns can distinguish restorers of eMS lines in sorghum. Theor. Appl. Genet. 96:791-796 https://doi.org/10.1007/s001220050804
  13. Jeffreys, A. J. and Morton, D. B. 1987. DNA fingerprints of dogs and cats. Anim. Genet. 18:1-15 https://doi.org/10.1111/j.1365-2052.1987.tb00739.x
  14. Kim, S. K., Jung, Y. H., Han, S. H., Oh, Y. S., Ko, M. H. and Oh, M. Y. 2000. Phylogenetic relationship among Haliotis spp. distributed in Korea by the RAPD analysis. Korean J. Genet. 22:43-49
  15. Klinbunga, S., Ampayup, P., Tassanakajon, A., Jarayabhand, P. and Yoosukh, W. 2000a. Development of species-specific markers of the tropical oyster (Crassostrea belcheri) in Thailand. Mar. Biotechnol. 2:476-484
  16. Klinbunga, S., Boonyapakdee, A. and Pratoomchat, B. 2000b. Genetic diversity and species-diagnostic markers of mud crabs (Genus Scylla) in Eastern Thailand determined by RAPD analysis. Mar. Biotechnol. 2:180-187
  17. Koh, M. C, Lim, C. H., Chua, S. B., Chew, S. T. and Phang, S. T. 1998. Random amplified polymorphic DNA (RAPD) fingerprints for identification of red meat animal species. Meat Sci. 48:275-285 https://doi.org/10.1016/S0309-1740(97)00104-6
  18. Liu, Z., Li, P., Argue, B. J. and Dunham, R. A. 1998. Inheritance of RAPD markers in channel catfish (Ictalurus punctatus), blue catfish (I. furcatus) and their $F_1$, $F_2$ and backcross hybrids. Anim. Genet. 29:58-62 https://doi.org/10.1046/j.1365-2052.1998.00284.x
  19. Mamuris, Z., Stamatis, C., Bani, M. and Triantaphyllidis, C. 1999. Taxonomic relationships between four species of the Mullidae family revealed by three genetic methods: allozymes, random amplified polymorphic DNA and mitochondrial DNA. J. Fish Biol. 55:572-587 https://doi.org/10.1111/j.1095-8649.1999.tb00700.x
  20. McCormack, G. C., Powell, R. and Keegan, B. 2000. Comparative analysis of two populations of the brittle star Amphiura filiformis (Echinodermata: Ophiuroidae) with different life history strategies using RAPD markers. Mar. Biotechnol. 2:100-106
  21. Muchmore, M. E., Moy, G. W., Swanson, W. J. and Vacquier, V. D. 1998. Direct sequencing of genomic DNA for characterization of a satellite DNA in five species of Eastern Pacific abalone. Mol. Mar. Biol. Biotech. 7 (1):1-6
  22. Nam, M. M., Yang, H. J. and Seo, B. K. 1989. Morphological variation of the crucian carp, Carassius auratus (Linnaeus) from Yongnam area in Korea. Korean J. Ichthyol. 1:54-63
  23. Nei, M. 1987. Molecular evolutionary genetics. Columbia University Press, New York
  24. Partis, L. and Wells, R. J. 1996. Identification of fish species using random amplified polymorphic DNA (RAPD). Mol. Cell. Probes 10:435-441 https://doi.org/10.1006/mcpr.1996.0060
  25. Ramesha, K. P., Saravanan, T., Rao, M. K., Appannavar, M. M. and Reddy, A. O. 2002. Genetic distance among south Indian breeds of zebu cattle using random amplified DNA markers. Asian-Aust, J. Anim. Sci. 15:309-314 https://doi.org/10.5713/ajas.2002.309
  26. Sharma, A. K., Bhushan, B., Kumar, S., Kumar, P., Sharma, A. and Kumar, S. 2004. Molecular characterization of Rathi and Tharparkar indigenous cattle (Bos indicus) breeds by RAPD-PCR. Asian-Aust. J. Anim. Sci. 17:1204-1209 https://doi.org/10.5713/ajas.2004.1204
  27. Siti Azizah, M. N., Ruzainah, A. and Patimah, I. 2005. Development of RAPD markers in the eelloach (Pangio spp.) for genetic discrimination and monitoring of wild and cultured populations. World Aquaculture 36 (1):37-43
  28. Tassanakajon, A., Pongsomboon, S., Jarayabhand, P., Klinbunga, S. and Boonsaeng, V. 1998. Genetic structure in wild populations of black tiger shrimp (Penaeus monodon) using randomly amplified polymorphic DNA analysis. J. Mar. Biotechnol. 6: 249-254
  29. Welsh, J. and McClelland, M. 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18:7213-7218 https://doi.org/10.1093/nar/18.24.7213
  30. Welsh, J., Petersen, C. and McClelland, M. 1991. Polymorphisms generated by arbitrarily primed PCR in the mouse: application to strain identification and genetic mapping. Nucleic Acids Res. 19:303-306 https://doi.org/10.1093/nar/19.2.303
  31. Ye, x, Zhu, J., Velleman, G. and Nestor, K. E. 1998. Genetic diversity of commercial turkey primary breeding lines as estimated by DNA fingerprinting. Poultry Sci. 77:802-807 https://doi.org/10.1093/ps/77.6.802
  32. Yoon, J. M. 2001. Genetic similarity and difference between common carp and Israeli carp (Cyprinus carpio) based on random amplified polymorphic DNAs analyses. Korean J. Biol. Sci. 5:333-339 https://doi.org/10.1080/12265071.2001.9647624
  33. Yoon, J. M. and Kim, G. W. 2001. Randomly amplified polymorphic DNA-polymerase chain reaction analysis of two different populations of cultured Korean catfish Silurus asotus. J. Biosci. 26:641-647 https://doi.org/10.1007/BF02704762
  34. Yoon, J. M. and Park, H. Y. 2002. Genetic similarity and variation in the cultured and wild crucian carp (Carassius carassius) estimated with random amplified polymorphic DNA. Asian-Aust, J. Anim. Sci. 15:470-476 https://doi.org/10.5713/ajas.2002.470
  35. Yoon, J. M. and Kim, Y. H. 2003a. Wide marsh clam (Corbicula spp.) populations from three sites analysed by RAPD-PCR-AGE. Bull. Electrochem. 19:337-348
  36. Yoon, J. M. and Kim, G. W. 2003b. Genetic differences between cultured and wild penaeid shrimp (Penaeus chinensis) populations analysed by RAPD-PCR. Korean J. Genet. 25:21-32
  37. Yoon, J. M. and Kim, J. Y. 2004. Genetic differences within and between populations of Korean catfish (S. asotus) and bullhead (P. fulvidraco) analysed by RAPD-PCR. Asian-Aust. J. Anim. Sci. 17:1053-1061 https://doi.org/10.5713/ajas.2004.1053
  38. Zhou, L., Wang, Y. and Gui, J. F. 2000. Analysis of genetic heterogeneity among five gynogenetic clones of silver crucian carp, Carassius auratus gibelio Block, based on detection of RAPD molecular markers. Cytogenet. Cell Genet. 88:133-139 https://doi.org/10.1159/000015506

Cited by

  1. Susceptibility of testicular cell cultures of crab, Scylla serrata (Forskal) to white spot syndrome virus vol.65, pp.2, 2013, https://doi.org/10.1007/s10616-012-9482-x