DOI QR코드

DOI QR Code

Unsteady Thin Airfoil Theory of a Biomorphing Airfoil

생체형상가변 에어포일에 대한 비정상 박익이론


Abstract

Birds and insect in nature morph their mean camberline shapes to obtain both lift and thrust simultaneously. Previous unsteady thin airfoil theories were derived mainly for a rigid flapping airfoil. An extended unsteady thin airfoil theory for a deformable airfoil is required to analyze the unsteady two-dimensional aerodynamic characteristics of a biomorphing wing. Theodorsen's approach is extended to calculate the unsteady aerodynamic characteristics of a biomorphing airfoil. The mean camberline of the airfoil is represented as a polynomial. The unsteady aerodynamic characteristics of the morphing airfoil are represented as noncirculatory and circulatory terms. Present theory can be applied to the unsteady aerodynamic analysis of a flapping biomorphing airfoil and the aeroelastic analysis of a morphing wing.

자연에 존재하는 새나 곤충들은 양력 및 추력을 발생하기 위하여 평균캠버선의 형상을 변화시킨다. 기존의 비정상 박익 이론들은 주로 강체 플랩핑 에어포일에 관하여 유도되어 왔다. 생체형상가변익의 비정상 공력특성을 파악하기 위하여 변형 가능한 에어포일에 대한 확장된 비정상 박익이론이 필요하다. 생체형상가변익의 비정상 공력특성을 계산하기 위해 Theodorsen의 접근방법을 확장하였다. 에어포일의 평균 캠버선은 다항식으로 나타내었다. 형상 가변익에 작용하는 비정상 공력특성을 순환항 및 비순환항으로 나누어 나타내었다. 본 이론은 플래핑운동을 하는 생체형상가변 에어포일의 비정상 공력해석 및 모핑날개의 공탄성 해석에 적용가능하다.

Keywords

References

  1. Johnston, C. O. Mason, W. H., Han, C. H., Robertshaw, H. H. and Inman, D. J., 'Actuator-Work Concepts Applied to Unconventional Aerodynamic Control Devices', 22nd Applied Aerodynamics Conference and Exhibit, 16 - 19 Aug 2004. Rhode Island Convention Center, Providence, Rhode Island
  2. Renaissance of Aeroelasticity and Its Future, Journal of Aircraft, Vol. 36, No. 1, January-February 1999 https://doi.org/10.2514/2.2411
  3. Rozhdestvensky, K.V. and Ryzhov, V.A., 'Aerohydrodynamics of Flapping-wing Propuls ors', Progress in Aerospace Sciences, Vol. 39, Issue 8, November 2003, pp. 585-633 https://doi.org/10.1016/S0376-0421(03)00077-0
  4. Singh, J. 'An Enhanced Simplified Zonal Approach for Unsteady Aerodynamics of Nonrigid Bodies', AIAA 95-1557, May 15-19, 1995
  5. Singh, J. 'Unsteady Aerodynamics of Deforming Airfoils A theoretical and Numerical Study', AIAA 96-2162, June 17-20, 1996
  6. Mateescu, D., and Abdo, M., 'Unsteady Aerodynamic Solutions for Oscillating Airfoils', AIAA 2003-227, January 6-9, 2003
  7. Mateescu, D. and Abdo, M., 'Nonlinear Theoretical Solutions for Airfoil Aerodynamics', AIAA 2003-4296, June 23-26, 2003
  8. Mesaric, M. and Kosel, F., 'Unsteady Airload of an Airfoil with Variable Camber', Aerospace Science and Technology, Vol. 8, 2004, pp. 167-174 https://doi.org/10.1016/j.ast.2003.10.007
  9. von Karman, T. and Sears, W. R, 'Airfoil Theory for Non-Uniform Motion', Journal of the Aeronautical Sciences, Vol. 5, No. 10, August 1938, pp. 379-390
  10. Spielberg, I.N., 'The Two-Dimensional Incompressible Aerodynamic Coefficients for Oscillatory Changes in Airfoil Camber', Journal of the Aeronautical Sciences, Vol. 20, March 2, 1953, pp. 432-434 https://doi.org/10.2514/8.2665
  11. Kussner, H. G. and Schwarz, L., 'The Oscillating Wing with Aerodynamically Balanced Elevator', NACA TM 991, October, 1941
  12. Zbikowski, 'On Aerodynamic Modelling of an Insect-like Flapping Wing in Hover for Micro Air Vehicles', Philosophical Transactions of the Royal Society of London Series, A 360, 2002, pp.273-290 https://doi.org/10.1098/rsta.2001.0930
  13. McCune, J. E., 'Nonlinear Aerodynamics of Two-Dimensional Airfoils in Severe Maneuver', AIAA Journal, Vol. 28, No. 3, March 1990, pp. 385-393 https://doi.org/10.2514/3.10403
  14. Theodorsen, T., 'General Theory of Aerodynamic Instability and the Mechanism of Flutter', NACA Rept. 496, 1935
  15. Garrick, I. E., 'A Review of Unsteady Aerodynamics of Potential Flows', Applied Mechanics Review, Vol. 5, No. 3, March 1952, pp. 89-91
  16. Bisplinghoff, R. L., Ashley, H., and Halfman, R. L., Aeroelasticity, Dover Publications, Inc., Mineola, New York, pp. 251