Modified Photo-Fenton Reaction을 이용한 Methyl Tert-butyl Ether (MTBE)의 분해 Kinetic 및 메커니즘 규명에 관한 연구

Degradation Kinetic and Mechanism of Methyl Tert-butyl Ether (MTBE) by the Modified Photo-Fenton Reaction

  • Kim, Min-Kyoung (Department of Chemical Engineering, Hanyang University) ;
  • Kong, Sung-Ho (Department of Chemical Engineering, Hanyang University)
  • 발행 : 2006.12.31

초록

지하 저장 탱크로부터의 유류 유출로 인하여 전세계적으로 넓은 지역의 토양 및 지하수가 오염되고 있다. Methyl tert-butyl ether(MTBE)는 대기 오염 감소를 위하여 널리 사용되고 있는 유류 첨가제이지만 토양 및 지하수로 유입되어 섭취 되었을 때 발암 가능성이 있는 유독 물질이다. 본 연구는 고도 산화 처리 기법 중 유기 오염물의 분해에 높은 효율을 나타내는 고전적 Fenton reaction의 최대 단점인 강한 산성(pH 2.5-3) 의존성을 극복한 새로운 산화 처리 기법을 개발하여 고농도의 MTBE를 효과적으로 분해 하는 것을 그 목적으로 하여 자연 친화적인 chelating agents를 사용하여 중성 영역에서 Fenton reaction을 가능하게 하는 기법인 Modified Fenton reaction과 Ultra Violet light(UV)를 이용하여 분해효율을 극대화 하는 Photo-assisted Fenton reaction을 응용한 Modified Photo-Fenton reaction system을 개발하여 최적 반응 조건 및 반응 차수, 반응 메커니즘을 밝혀내었다. 낮은 독성과 높은 생분해성을 나타낸 Citrate ion을 chelating agents로 선정하였으며 최적 반응 조건은 [$Fe^{3+}$] : [Citrate] = 1 mM : 4 mM, 3% $H_2O_2$, 17.4 kWh/L UV dose, 초기 pH 6.0이며 이 조건에서 1000 ppm MTBE를 분해한 결과 6시간 후 86.75%, 16시간 후 99.99%의 높은 분해율을 나타냈으며 최종 pH는 6.02로 안정적이었다. 또한 Modified Photo-Fenton reaction을 이용한 MTBE 분해 반응은 유사 1차 반응을 나타내었으며 methoxy group이 ${\cdot}OH$ radical과 주로 반응하여 tert-butyl formate(TBF)가 주요 분해 산물이 되는 분해 경로를 따른 다는 것이 밝혀졌다. 본 연구로 개발된 Modified Photo-Fenton reaction에서 발생되는 산화제인 ${\cdot}OH$ radical의 비선택적 반응성을 고려할 때 본 system은 다른 종류의 유기 오염물 분해에도 효과적일 것으로 판단된다.

Improper disposal of petroleum and spills from underground storage tanks have created large areas with highly toxic contamination of the soil and groundwater. Methyl tert-butyl ether (MTBE) is widely used as a fuel additive because of its advantageous properties of increasing the octane value and reducing carbon monoxide and hydrocarbon exhausts. However, MTBE is categorized as a possible human carcinogen. This research investigated the Modified Photo-Fenton system which is based on the Modified Fenton reaction and UV light irradiation. The Modified Fenton reaction is effective for MTBE degradation near a neutral pH, using the ferric ion complex composed of a ferric ion and environmentally friendly organic chelating agents. This research was intended to treat high concentrations of MTBE; thus, 1,000 mg/L MTBE was chosen. The objectives of this research are to find the optimal reaction conditions and to elucidate the kinetic and mechanism of MTBE degradation by the Modified Photo-Fenton reaction. Based on the results of experiments, citrate was chosen among eight chelating agents as the candidate for the Modified Photo-Fenton reaction because it has a relatively higher final pH and MTBE removal efficiency than the others, and it has a relatively low toxicity and is rapidly biodegradable. MTBE degradation was found to follow pseudo-first-order kinetics. Under the optimum conditions, [$Fe^{3+}$] : [Citrate] = 1 mM: 4 mM, 3% $H_2O_2$, 17.4 kWh/L UV dose, and initial pH 6.0, the 1000 ppm MTBE was degraded by 86.75% within 6 hours and 99.99% within 16 hours. The final pH value was 6.02. The degradation mechanism of MTBE by the Modified Photo-Fenton Reaction included two diverse pathways and tert-butyl formate (TBF) was identified to be the major degradation intermediate. Attributed to the high solubility, stability, and reactivity of the ferric-citrate complexes in the near neutral condition, this Modified Photo-Fenton reaction is a promising treatment process for high concentrations of MTBE under or near a neutral pH.

키워드

참고문헌

  1. Balzani, V. and Carassiti, V., 1970, Photochemistry of Coordination Compounds. Academic Press, London, Chapter 10, 145-192
  2. Bergendahl, J.A. and Thies, T.P., 2004, Fenton oxidation of MTBE with zero-valent iron, Water Res., 38, 327-334 https://doi.org/10.1016/j.watres.2003.10.003
  3. Burbano, A.A., Dionysios, D.D., Suidan, M.T., and Richardson, T.L., 2005, Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent, Water Res., 39, 107-118 https://doi.org/10.1016/j.watres.2004.09.008
  4. Buxton, G.V., Greenstock, C.L., Helman, W.P., and Ross, A.B., 1988, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals $({\cdot}OH/{\cdot}O^-$) in aqueous solution, J. Phys. Chem. Ref. Data, 17(2), 513-886 https://doi.org/10.1063/1.555805
  5. Cassada, D.A., Zhang, Y., Snow, D.D., and Spalding, R.F., 2000, Trace Analysis of Ethanol, MTBE, and Related Oxygenate Compounds In Water Using Solid-Phase Microextraction and Gas Chromatography/Mass Spectrometry, Analytical Chemistry, 72, 4654-4658 https://doi.org/10.1021/ac000462v
  6. Cater, S.R., Stefan, M.I., Bolton, J.R., and Safarzadeh-Amiri, A., 2000, UV/$H_2O_2$ Treatment of Methyl tert-Butyl Ether in Contaminated Waters, Environ. Sci. Technol., 34, 659-662 https://doi.org/10.1021/es9905750
  7. Jeong, J. and Yoon, J., 2004, Dual roles of $CO^{2-}$ - for degrading synthetic organic chemicals in the photo/ferrioxalate system, Water Res., 38, 3531-3540 https://doi.org/10.1016/j.watres.2004.05.016
  8. Liang, S., Palencia, L.S., Yates, R., Davis, M.K., Bruno, J.M., and Wolfe, R.L., 1999, Oxidation of MTBE by ozone and peroxone processes, J. AWWA, 91(6), 104-114
  9. Lien, H.L. and Zhang, W., 2002, Novel Bifunctional Aluminum for Oxidation of MTBE and TAME, 128(9), 791-798 https://doi.org/10.1061/(ASCE)0733-9372(2002)128:9(791)
  10. Pignatello, J.J., 1992, Dark and Photoassited $Fe^{3+}$-Catalized Degradation of Chlorophenoxy Herbicides by Hydrogen Peroxide, Environ. Sci. Technol., 26, 944-951 https://doi.org/10.1021/es00029a012
  11. Qi, W., Reiter, R.J., Tan, D.X., Manchester, L.C., Kim, S.J., and Garcia, J.J., 1999, Inhibitory effects of melatonin on ferric nitrilotriacetate-induced lipid peroxidation and oxidative DNA damage in the rat kidney, Toxicology, 139(1-2), 81-91 https://doi.org/10.1016/S0300-483X(99)00094-3
  12. Safarzadeh-Amiri, A., Bolton, J.R., and Cater, S.R., 1997, Ferrioxalate- mediated photodegradation of organic pollutants in contaminated water, Wat. Res., 31(4), 787-798 https://doi.org/10.1016/S0043-1354(96)00373-9
  13. Stefan, M.I., Mark, J., and Bolton, J.R., 2000, Degradation Pathways during the Treatment of Methyl tert-Butyl Ether by the UV/$H_2O_2$ Process, Environ. Sci. Technol., 34, 650-658 https://doi.org/10.1021/es9905748
  14. Walling, C., 1975, Fenton's Reagent Revisited, Accounts of Chemical Research, 8, 125-131 https://doi.org/10.1021/ar50088a003
  15. Xu, X.R., Zhao, Z.Y., Li, X.Y., and Gu, J.D., 2004, Chemical Oxidative degradation of methyl tert-butyl ether in aqueous solution by Fenton's reagent, Chemosphere, 55, 73-79 https://doi.org/10.1016/j.chemosphere.2003.11.017