1. Introduction
2. Agent-Based Approaches

3. Rationales
4. Conclusions

1. Introduction

Intelligent service robots consist of variety of complex
software components that are usually distributed over
several single (SBCs). Those
components need to be integrated into a single unit to
form an integrated identity of a robot. We have been
building an integrated software framework for intelligent
service tobots for the past three years exploiting the
benefits of agent-based approach to both establishing the
software engineering process and designing the robot
architecture. In this paper, we present an agent-based
approach at the deliberative layer of robotarchitecture to
develop large complex quality software systems
consisting of heterogeneous and distributed software
components. We show the level of abstraction provided
by the agent-oriented methodology and design steps to
build software systems of intelligent service robots.

While Industrial robots provide simple, repetitive, and
physical supports, intelligent service robots are
characterized by the integratingvarious intelligent
finctionalities. Designing and building intelligentrobots
thus involves integration of various functionalities such

board computers

as manipulation, navigation, various recognitions, speech

* A EUsa 2uy, Fug

understanding and expression, reasoning, planning, and so
on. Furthermore, such functional components are often
distributed over several processors even in a single
robotic system. As the rmumber of intelligent
functionalities grows steadily and the demand for more
flexible, adaptable, extensible, and robust intelligent
components increases, software development complexities
are also rapidly growing and new software enginecring
methodologies and development strategies becomes
critical.

2. Agent-Based Approaches

Agent technology is now being recognized as an
indispensable new software engineering methodology and
development strategy to manage the intertwined complex
near-independent software
components in complex software systems. In this section,
the characteristics of agent-based software development
are presented and then an agent-based software
engineering approach is proposed. In general, an agent is
a proactive autonomous software unit interacting with its
environment and other agents and decides autonomously
its behavior to act on behalf of the user based on its
goal and belief. As a software component, an agent
exhibits some or all of the following additional
characteristics.

interactions between

rok

= QIR HE S| (73 M335)

Xs ZXo| ofo|HE J[4t HE &

2t

Adaptability: The agent can update or augment its
knowledge and capabilities by its own leaming
mechanism or instruction from others so that it can
change its behavior appropriate for the new
environment.

Autonomy:The agent can act proactively independent of
other agents on its own thread of control in accord
with its goal.

Consciousness and knowledge ability: Theagent is
aware of, and can reason about the goals,
capabilities and knowledge of itself and other
agents.

Persistency:The agent retains its state including
knowledge and goals over extended periods of time
even when unexpected failures occur.

Sociability: The agent is conscious of the existence of
other agents and is able to communicate and
interact with other agents to form an agent
COMENUNity.

Mobility:The agent can move from one execution
environment to another and then can continue
execution in the new execution environment by
moving its code as well as its state and context to
continue its execution.

These characteristics combined with the advantages of
conventional component-based software engineering offer
an effective alternative for building large distributed
web-based application systems. The agent-based software
system design phase includes new design activities such
as identification of ~agents for the large distributed
systems.

Each agent has its own belief, desire, and intention as
the basic an autonomous software component of the
system. An agent acts as an actor of interactions
between these basic components. Agents may be
implemented using active distributed objects with scripted
behavior specifications or using specialized agent
programming language. Agents are located in an agency
which provides facilities for ‘locating other agents and
commumicating messages. Agent commumication requires

standard patterns of interactions between agents and
structure of the commumicating messages. An agent
communication language (ACL) such as KQML [1] and
FIPA ACL (see http;jwww.fipaorg) defines rules of
communications including how communication is to be
started and finished. Recently these languages have been
converted to a standard XML [2] encodings.

The interacting agents need to understand the
vocabulary used to commmmicate with each other. The
set of vocabularies are also called ontology. The
ontology describes objects, attributes, operations in the
given domain, their relationships and meanings, and rules
of interactions with other agents and services.

Multiagent Systems integrate a group of possibly
heterogeneous agents and users to coordinate their
activities. Agents in a multiagent system may
dynamically join or leave the system as in many
e<commerce applications. The interaction pattemn
determines the characteristics of the multiagent system.
The interaction patterns may be specified in declarative
tules, interaction protocols, or workflow [3].

" Agent-oriented programming encompasses all of the
above mentioned components, that is, identification of
agents, agency, agent comsnunication languages, ontology,
and interaction patterns in multiagent systems. Note that
the basic components of the agent are conceptually
consistent with the components of the knowledge level
introduced by Allen Newell [4]. At the knowledge level
an agent is described as having a set of goals, a set of
possible actions, and a body of knowledge. Agent’s
behavior is predicted by the principle of rationality.

Currently we are developing agent-based robot
architectute to support integration of intelligent robot
software components. Our architecture providesa suit of
tools to develop. individual agents and interactions based
on blackboard architecture. Agents are currently
implemented as blackboard agents and the architecture
works as a constraint or guideline to the development of
agent systems. A sketch of the development phase in
this guideline is described in the following sections.

2006. 9.

A5 2Ro| ofo|ME 7|t M SF

2.1 Requirement Analysis and Definition
of Belief

As in the conventional software engineering,
requirement analysis is performed as the first step of the
development. One of the major results of requirement
analysis is the definition of agent’s belief. Belief is
represented in terms of basic objects and predicates
defined over the objects. In this process, existing
onfologies may be searched, referred, specialized and
updated. Belief system may exist in a reusable library.
In this case, new belief system can be derived from the
existing one through parameter initialization.

2.2 Definition of Agent’'s Actions

Rigorous formal definition of agent’s intention [5] has
been applied various agent systems. In this paper, we
adopt a simple notion of intentions. Agent’s intention
simply means a series of actions committed to achieve
goals. Thus agent’s actions are the means of realizing
agent’s intention.

The series of actions are represented as the state of
progress made toward the agent’s goals. Basic actions of
an agent thus need to be identified. In this stage, agent’s
basic actions are identified and represented as primitive
actions. Primitive actions are atomic actions which run
to completion without being interrupted until either
successful or failed termination of the action. Complex
behaviors can be expressed as combinations of primitive
actions using plans (Section 2.4) or goals (Section 2.3)
to be explained in the following sections.

2.3 Definition of Agent's Goals

An agent has goals to achieve or muaintain. A goal
specifies the state to bring about or keep up. Goals are
achieved or maintained by means of agent’s plans (see
Section 2.4).

An agent’s goals are classified into two categories:

top-level goals and subgoals. Top-level goals are the
highest-level goals that the agent has. Top-level goals
are usually given to the agent by the user of the agents
as a specification of tasks. Top-level goals are persistent
in that they are pursued until either they are either
satisfied or removed explicitly. Goals can be satisfied by
successful plan execution or opportunistically by some
other means such as other agents.

Subgoals are goals that the agent creates as subtasks
from within plans during plan execution. Subgoals are
not persistent by default. If a plan to achieve a subgoal
fails, the subgoaling action is considered to have failed
as if it were any other type of valid plan action.
Subgoaling can be performed to arbitrary depth levels
and can be recursive, where a plan for a particular goal
can subgoal to the same goal.

Agent’s goals have prioritiesassociated them. The
priority is dynamically calculated and thus
situation-dependent. On every cycle of execution, the
execution thread switches to the plan for the goal with
highest priority.

In this stage, top-level goals and subgoals are
identified and structured in a goal hierarchy. The
dependency between goals can be either
AND-dependency or OR-dependency. In order to achieve
a task, all the subtasks in AND-dependency and at least
one subtask in OR-dependency must be satisfied. Since
XML is good for representing hierarchical structure and
RDF for representing task dependencies, we adopt both
XML and RDF representations for agent’s goals.

2.4 Implementation of Agent Plans

Agent’s plans are the means to achieve the goals. A
plan defines a procedural specification for accomplishing
a goal. Applicability of a plan for a goal is limited to a
particular goal and constrained to a certain condition or
context. The procedure to follow in order to accomplish
the goal is given as a combination of primitive actions
and subgoals using plan constructors. Plan constructors

o= QI MEES| (H7H X35)

9

A5 289 ojojHE J|8t ¥ &8

specify common programming constructs such as
sequential execution, conditional execution, and
conditional iteration. Each plan needs a unique name that
can be used to distinguish between procedures. As in the
goals, associated with each plan is an explicily or
implicitly defined utility value or function, which is used
to influence selection of certain procedures over others
through the default utility-based selection of plans. A
plan may either succeed or fail Additional separate
bookkeeping actions for sucoessful termination and for
failed termination of the plan. The sufficiencyof plans
for the agent’s goals: needs to be checked against the
goal structure (see Section 2.2) through a classification
of the goal and condition of the plans.

2.5 Definition of Agent Interactions .

Agents - interact throughagent commumications. Agent
communication requires predefined oniology and agent
interaction protocols. In our framework, we adopt a
state-based protocol and states wse the same
representation as that of goals because goals are
basically specifies the state to reach. The content of
agent communication is also dependent on ontology and
agent’ communication supports XML or SOAP (Simple
Object - Activation ‘Protocol) type of messages. The
interaction structure of agents is again represented using
RDF (Resource Description Framework).

3. Rationales

The concept of an agent as an autonomous system,
capable of interacting with other agents in order to
satisfy its design objective has led to the growth of
interest within software designers as a new software
enginecring paradigm [6]. Agent-based systems are
increasingly being applied in a wide range of areas
including business process modeling, telecommumications,
computer games, military simulations, and intelligent
robots. The agent paradigm has an enommous influence

on mode] building and information integration because of
the natural capacity of nulti-agent systems to design
distributed complex systems. Multi-agent systems that are
composed of collections of autonomous, interacting
agents offers great means to model and simulate real
worlds with complex, dynamic, and nondeterministic
environments where agents need to function with
exogenous events and uncertain effects as well as other
agents. Our approach borrows the concept and
methodology of multi-agent systems since intelligent
robots as autonomous systems have the following
properties:

Heterogeneous multiple components: Intelligent robots
require integration of multiple functional
components such as manipulations, navigations,
recognitions, speech understanding and expression,
reasoning, planning, and so on. Those components
are furthermore heterogeneous in terms of

. implementation languages and platforms.

Distributed components:The platform for an intelligent
robot typically has multiple Single Board Computers
(SBCs) to provide enough processing power to
meet the real-fime requirements and to properly
handle paralle] and layered robot activities.

Intelligent systems:Intelligent robots are inherently
intelligent systems. According to Erman [7] and
recitation by Booch [8] in the context of software
engineering, infelligent systems differ from
conventional systems by a number of attributes as
follows:

- They pursue goals which vary over time. Goals
form a larger context for the operation of the
system. The dynamic nature of that context often
makes static algorithms insufficient, requiring the
system to exhibit more flexible behavior than
conventional systems.

- They incorporate, use, and maintain knowledge.
Knowledge includes information stored in
traditional knowledge engineering forms, such as

10

2006. 9.

s 2Re| ofo|HE J|¢ Y& S8

production rules, but also data stored in
conventional databases.

- They exploit diverse, ad hoc subsystems
embodying a variety of selected methods. The
subsystems may be “intelligent” or conventional.

- They interact intelligibly with users and other
systems. Intelligibility is one of the most striking
attributes of knowledge systems.

- They allocate their own resources and atientjon.
Intelligent systems often need to be introspective
and aware of their progress in applying their
knowledge and subsystems in pursuit of their
goals,

Evolving systems: Service rtobots are one type of
intelligent machine that is designed to interact with
human users in relatively unstructured environments
[9. A robot is also commonly defined as
"reprogrammable, multifunctional manipulator
designed t0 move material, parts, tools or
specialized devices through various programmed
motions for the performance of a variety of tasks
[10]," emphasizing the “programmable” or
“reprogrammable” aspects of robots. Especially the
performance goals for an intelligent robot system
ate continually increasing in complexity. This
suggests that the robot architecture should be
designed to evolve over time and have new
capabilities added to it.

Conventional control systems and architectures are no
longer adequate to realize the characteristics of the
intelligent systems completely, nor are they sufficient to
master the complexity of such systems. Our approach is
to design the system as a multiagent systems by
ascribing to selected components “autonomous systems”
which can act mainly on themselves without external
control most of the time. We model the autonomous
systems as agents since an agent is a self-contained,
concurrently executing thread of control that encapsulates
some state and communicates with its environment and

possibly other agents via some sort of message passing
[11]. Higher degree of flexibility can then be achieved
based on a control system consisting of such highly
independent modules composed to fit for an application.
In our agent-based control system, the resources as well
as the agents are designed to operate as autonomous
subsysterns. Resources are mostly passive or simple
active units such as manipulable objects or grippers.

Control of a complex system like intelligent robots
can efficiently be realized by successively delegating
control competence in hierarchically structured,
autonomously operative modules, each of which
implements a manageable part of the whole system. The
top-most controller of the system is especially built
using the BDI model. BDI agents [12] are modeled in
terms of beliefs, desires and intentions and believed to
provide sufficient level of abstraction to overcome the
complexity of intelligent robots.

Our objectives in designing and building a control
structure for intelligent robots are summarized as follows:
» Simple and unified control for heterogeneous

components: Integration of multiple functional
components that are developed independently requires
the control interface between the components and the
controfler to be simple and unified. The control
interface should be also independent of the language
that is used to build the components and the platform
where the components run. Ontological commands
using commnand messages instead of application
program interfaces (APIs) are much desired to achieve
these ends because a single simple API can be used
for diverse commands that are agreed upon the
ontological commitment.

Location transparency: A common issue of distributed
software systems is the allocation of the logical
software components of a system to physical nodes. In
a distributed system, location transparency allows the
resources to be accessed by a user anywhere on the
network without conceming where the resource is
located. Location transparency is the ability to map a

o= 2l FREE| (HTR ®e%)

11

s 22X oo|ME 7|¢ HE &

single specification to a number of different physical
environments without requiring changes to the code.
Likewise, the various components located in different
SBCs need to be accessed without prior knowledge of
their location and to operate independently of their
locations. The actual locations of components, however,
need to be specified in explicit configuration of the
system to support -location transparency. Location
transparency eliminates location as a concern for the
developer and the need to overlap of development
processes among design, development and the
deployment phase. This is likely to produce benefit in
the development ~of intelligent robots because various
components are independently developed on their own
platform to be integrated later in the development
phase.

High-level control: As discussed in Section 3,
intelligent robots as intelligent systems are complex
systems that should be able to use their computational,
sensory, and physical resources to achieve goals and
respond to changes in the environment. Such complex
systems need higher level of control than the level for
the conventional systerms. The perceive-reason-act cycle
of agent-based approaches combined with the
agent-based commumication using ACL messages seem
to provide an appropriate level of abstraction for
high-level control of intelligent robots. An agent model
provides a conceptual boundary between the interior
and the exterior. The interior of the boundary gives
freedom of being independent from other agents or
being autonomous. The exterior of the boundary
provides a sufficient level of abstraction to other
agents so that the complexity of interactions between
objects can be reduced by means of the agreement or
protocol of interaction between agents. This modularity
provided by the notion of agent allows us to develop
components independently and easily integrate into the
intelligent system. The integration does not require any
modification of the system since it uses predefined
goal-based interaction instead of interdependent function

calls or direct method invocation as in the
object-oriented methodology. The goal-based interaction
also provides additional benefit for the intelligent
systems. Function calls or method invocations in the
object-oriented ~ programming tend to . generate
deterministic outcomes. On the other bhand, in our
agent-based approach, the desired effect is given to
each agent in the form of goals and thus agents are
free to choose whatever suitable course of actions to
achieve the goal adapting to the dynamicaily changing
situation.

4. Conclusions

Intelligent service robots consist of variety of complex
distributed components that are to be integrated into a
single tobot software system. Agent-oriented software
development is a mew promising software engineering
paradigm to promote the development of such complex
distributed software systems. An agent model provides a
conceptual boundary between the interior and the
exterior, The interior of the boundary gives freedom of
being independent from other agents or being
AUtONOMOUS.

In this paper, we presented our rationalesof our
agent-based integration approach for building intelligent
service robots. Our effort to develop an agent-based
architecture for intelligent service robots reflects the need
for systematic engineering methodologies to utilize the
power of agent technology. We believe that rapid
changes in computing environment and the growing
industry for intelligent robots will accelerate the use of
agent-based approaches.

Acknowledgment

This research was supported by the Intelligent
Robotics Development Program, one of the 21st Century
Frontier R&D Programs funded by the Ministry of
Commerce, Industry and Energy of Korea.

12

2006. 9.

As 229 Ao|HE I8 HE B3

ok

References

(1] Fnin, T., Labroy, Y., Mayfield, J. KQML as an
agent communication language. In Bradshaw, JM.,
ed.: Software Agents. MIT Press, Cambridge, Mass.
(1997) 291 - 316

[2] Klein, M.: XML, RDF, and relatives. IEEE
Intelligent Systems 16(2) (2001) 26-28

[3] Kaiser, G., Stone, A, Dossick, S.. A mobile agent
approach to lightweight process workflow. In:
Proceedings of the International Process Technology
Workshop (IPTW), Grenoble, France (1999)

[4] Newell, A: The knowledge Ilevel Atificial
Intelligence 18 (1982) 87-127

[5] Cohen, PR, Levesque, HJ.: Intention is choice
with commitment. Artificial Intelligence 42(2-3)
(1990) 213-261

[6] Jennings, NR., Sycara, K, Wooldridge, M.: A
roadmap of agent research and development.
Autonomous Agents and Multi-Agent Systems |
(1998) 7-38

{7] Brman, LD, Lark, J.S, HayesRoth, F: ABE: An
environment for engineering intelligent systems.
IEEE Transactions on Software Engineering 14(12)
(1988) 1758-1770

[8] Booch, G.: Object-Oriented Analysis and Design.
Addison-Wesley (1994)

[9] Pack, RT.:. IMA: The Imtelligent Machine
Architecture. PhD thesis, Vanderbilt University,
Nashville, Termessee (2003)

[10] Dowling, K.: Robotics: comp.robotics frequently
asked questions. http://www.fags.org/fags/robotics-fag/
(1995)

[11] Wooldridge, M., Jennings, NR.: Intelligent agents:
Theory and practice. The Knowledge Enginecring
Review 10(2) (1995) 115-152

[12] Rao, AS., Georgeff, M.P.: BDI agents: From theory
to practice. In: Proceedings of the First International
Conference on Multiagent Systems, San Francisco,
California (1995) 312-319

OMALHO

OlXl &

19853 Aethgta ALHEA s At

19873 METHE tiehe ARSAT T KA
19973 University of Michigan, EECS, 8} uhA}
1998~ &) MSAENE Y 2, Fag

o

gk QB BE

J

15| (M7 H33) 13

