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PARTIALLY ASHPHERICAL
MANIFOLDS WITH NONZERO EULER
CHARACTERISTIC AS PL FIBRATORS

YounGg Ho IM AND YONGKUK KiMm

ABSTRACT. Approximate fibrations form a useful class of maps. By
definition fibrators provide instant detection of maps in this class,
and PL fibrators do the same in the PL category. We show that ev-
ery closed s-hopfian t-aspherical manifold N with sparsely Abelian,
hopfian fundamental group and x(N) # 0 is a codimension-(¢ + 1)
PL fibrator.

1. Introduction

We seek to identify homotopy types by means of which a proper map
defined on an arbitrary manifold of a given dimension can be quickly
recognized as an approximate fibration, simply because all point preim-
ages have the specified homotopy type. More precisely, the goal is to
present closed n-manifolds N which force proper maps p: M — B to
be approximate fibrations, when M is a connected (n 4+ k)-manifold and
each p~1(b) has the homotopy type (or, more generally, the shape) of
N. Such a manifold N is called a codimension-k fibrator.

It is well known that every closed s-hopfian manifold N with hop-
fian 71 (N) and x(IV) # 0 is a codimension-2 fibrator (see [9, Propo-
sition 2.4]). In general, these codimension-2 fibrators need not to be
codimension-k (k > 2) fibrators. For example, the real projective plane
RP? is not a codimension-3 fibrator although w1 (RP?) = Zs is hopfian
and x(RP?) =1 # 0 [5].
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Normally cohopficity and sparsely Abelianness on 7 (/N) are indis-
pensable for those codimension-2 fibrators to be codimension-k (k > 2)
fibrators. In this paper, without considering normally cohopficity on
71(N), we show that a manifold N with x(N) # 0 can be a codimension-
k (k > 2) fibrator. Since it is well-known that all closed aspherical man-
ifolds with nonzero Euler characteristic always have normally cohopfian
fundamental groups [11], to fit our purpose, we consider a partially as-
pherical manifolds with nonzero Euler characteristic. Of course, not
every manifolds N with x(N) # 0, such as some 4-manifolds N with
71 (N) = Za * Z3, have normally cohopfian 71 (N).

By looking at the covering spaces of M instead of considering M itself,
we have to take care of degree of maps between different manifolds with
same dimensions (see Lemma 2.1 below and the proof of Proposition 2.6).
As a result, we get the main result, Theorem 2.9, which promises that
every closed s-hopfian t-aspherical manifold N with sparsely Abelian,
hopfian 71(N) and x(N) # 0 is a codimension-(¢ + 1) fibrator.

2. Manifolds with nonzero Euler characteristic as PL fibra-
tors

Throughout this paper, the symbols x, = and = denote Euler charac-
teristic, homeomorphism and isomorphism in that order, and homology
groups will be computed with integer coeflicients unless specified.

We begin by presenting the notation and fundamental terminology
to be employed throughout: M is a connected (n + k)-manifold and
p: M — B is a proper map of M to a space B such that each p~1(b) has
the homotopy type (or, more generally, the shape) of a closed, connected
n-manifold. Such a map p will be called a codimension-k map. When
N is a fixed PL n-manifold, M is a PL manifold, B is a polyhedron,
and p : M — B is a PL map, then p is said to be N-like if each
p~1(b) collapses to an n-complex homotopy equivalent to N (denoted by
p~}(b) ~ N). (This PL tameness feature, which seems just as effective
as requiring p~1(b) actually to be an m-manifold, imposes significant
homotopy-theoretic relationships, revealed in [4, Lemma 2.4], between N
and preimages of links in B.) We call N a codimension-k PL fibrator if,
for every PL (n+ k)-manifold M and N-like PLmapp: M — B, pisan
approximate fibration. Similarly, we call N a codimension-k orientable
PL fibrator if this holds for all orientable, PL (n + k)-manifolds M,
which we abbreviate by writing that N is a codimension-k PL o-fibrator.
Finally, if N is a codimension-k PL fibrator (respectively, codimension-k
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PL o-fibrator) for all & > 0, we simply call N a PL fibrator (respectively,
PL o-fibrator). .

An ANRY is said to be t-aspherical if m;(Y) =2 0 whenever 1 < ¢ < ¢.

A group G is said to be: hopfian if each epimorphism G — G is an iso-
morphism; cohopfian if each monomorphism G — G is an isomorphism;
and normally cohopfian if each monomorphism G — G with image a
normal subgroup of G is an isomorphism. A group G is sparsely Abelian
if it contains no non-trivial Abelian normal subgroup A such that G/A
is isomorphic to a normal subgroup of G.

A codimension-k map p : M™* — B is said to have Property
RS (R?,R;) if for each x € B, a retraction R : p~1(U) — p~(z)
defined on some open neighborhood U of  in B induces an isomor-
phism(epimorphism, monomorphism, resp.) (Rlp~}(y)). : Hi(p~1(v))
— H;(p~Y(z)) for all y € U. The (absolute) degree of a map is com-
puted with integer coeflicients and is understood to be a nonnegative
number. Explicitly, a map f : N — N’ between closed, orientable
n-manifolds is said to have degree d if there are choices of generators
v € Ho(N;Z),y € Hy(N'; Z) such that f.(y) = dy', where d > 0 is an
integer.

A closed, orientable manifold NV is said to be hopfian if every degree
1 map N — N which induces an isomorphism at the fundamental group
level is a homotopy equivalence. As a result, when 71 (V) is a hopfian
group, N is a hopfian manifold if and only if all degree 1 maps N — N
are homotopy equivalences.

The continuity set of p consists of all x € B equipped with such a
neighborhood U such that the associated R : p~1(U) — p~'(z) restricts
to an isomorphism (R|p™1(v))« : Ho(p~1(y)) — H.(p~ (x)) for all y €
U. Establishing that B equals the continuity set of p is a cornerstone
for showing an N-like map p is an approximate fibration.

LEMMA 2.1. [6, Proposition 2.1] Let p : M™+¥ — R* be a codimension-
k map from an orientable (n + k)-manifold M™** onto Euclidian k-
space such that p is an approximate fibration over R¥ \ 0. Then p
has Property ’Rf for all i < k — 3, and RE_T Furthermore, if p has
Property R,f_2 and ’Rf_l, then for all y € R¥\ 0, the degree of map
Rip~}(y) : p~ (y) — p~1(0) is one.

Proof. Let y € R¥ \ 0. Since p is an approximate fibration over the
homotopy (k — 1)-sphere R* \ 0, the Serre exact sequence [12, p.519]

= Hi(p~'(y)) —» Hi(M \p~(0)) — H;(R*\0) =0 (i <k—1)
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gives an isomorphism H;(p~!(y)) — H;(M \ p~1(0)) for i < k — 3 and
an epimorphism for ¢ = k — 2. The homology exact sequence of the pair
(M, M \ p~1(0)) gives an isomorphism H;(M \ p~(0)) — H;(M) for
i < k — 2. Therefore, the inclusion p~!(y) — M induces a composite
homomorphism

incl, : Hi(p~'(y)) — Hi(M \p~'(0)) — Hi(M),

which is an isomorphism for ¢ < k —3 and an epimorphism for i = k — 2.
In this setting the inclusion p~!(0) — M is a homotopy equivalence: an
appropriate deformation retraction of R¥ into a neighborhood of 0 fixing
a smaller neighborhood of 0 can be lifted to a deformation of M into a
(preassigned) neighborhood W of p~1(0) fixing a smaller neighborhood
of the latter (1, Proposition 1.5], and W can be selected to deform to
p~1(0) in M. Consequently, H;(M) = H;(p~(0)) for all z. It follows
that H;(p~'(0)) — H;(M) is an isomorphism, and p has property RS
forall i < k— 3 and Rf~2.

Furthermore, suppose p has Property RE_Q and ’Rf_l. We demon-
strate that R|p~!(y) is a degree one map by verifying it gives a coho-
mology isomorphism between H™(p~1(0)) = Hy(M,M \ p~1(0)) and
H"(p~Y(y)) & Hx(M, M \ p~1(y)), and then applying the universal co-
efficient theorem to obtain the same for homology. The key step in-
volves showing that p induces an epimorphism ¢ : H(M, M\ p~}(y)) —
Hi(R*,R* \ y) of pairs.

In the Serre exact sequence Hy_1(p~'(y)) — Hy_1(M \ p~1(0)) —
Hi_1(R*\ 0) — Hy_o(p~'(y)) — Hp_o(M \ p~1(0)), the final homo-
morphism is a monomorphism, for p has Property Ri_z and Hyg_o(M \
p~}(0)) — Hi_2(M) is an isomorphism. Hence we have an epimorphism

P He1(M \ p~'(0)) — Hy_1(R*\ 0).
Consequently, from the following diagram of exact sequences
Hy(M, M\ p~1(0))
,o

Hy—1(M \p~(0))

pl

onto

incl

Hy—1(p ' (y)) Hy1(R*\0) =~ Z

onto

Hy 1 (M)
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we conclude that Hi_1(M \ p~1(0)) = inclu(Hy—1(p~1(¥))) + im(8).
To obtain the epimorphism of pairs, examine the homology ladder

Z = Hy(M, M\ p~(0)) —2— Hy_1(M \p~(0)) —— Hy_1(M)

q*l pil
Z = Hy(RF RF\0) ——  H,_1(R*\0).

As incly(Hg—1(p~1(y))) C ker pl,, diagram chasing yields that p/, carries
im(9) isomorphically onto Hy_;(R*\ 0). By a similar argument, p re-
stricts to an isomorphism Hy_1(M, M\p~'(y)) — Hy_1(R¥\y). Specify
a closed k-ball D C R containing 0 and y in its interior. One sees what
is needed, the isomorphism between H™(p~1(0)) and H"(p~'(y)), in the
diagram below.

H™(p~1(0)) ——  H'@@p YD) —— H™(p~(y))

I I I

Hy(M, M\ p~(0)) «—— Hy(M,M\p~"(D)) —— Hy(M, M \p~"(y))

I+ l- Jo

Hi(R*,RF\0) ——— Hi(R*R\D) —=— Hi(R*R*\y). o

REMARK 2.2. In Lemma 2.1 all fibers are not required to have the
same homotopy type.

LEMMA 2.3. [4, Lemma 6.1] Suppose N and N’ are closed orientable
n-manifolds such that B;(N) = Bi(N') > 0 for some 0 < i < n,
and suppose f : N — N’ is a map that induces isomorphisms fi| :
free part{H;(N)} — free part{H;(N")} and f*|: free part{ H* *(N')}
— free part{ H*"*(N)}. Then the degree of map f is one.

Proof. Let n € Hy(N) and ' € H,(N') be generators, and f.(n) =
dn’ for some integer d. Take an indivisible element & € H;(N’). (Recall:
a € Hy_1(M) is indivisible if d - ' = a for some o' € Hi_1(M) and
d € Z implies d = +1.) Choose & € H;(N) for which f,(¢§) = &'. Identify
v € H"*(N) such that n ~ v = £. Finally, find v/ € H**(N’) such
that (f*)(¢') = v. Naturality of Poincaré duality gives

g =5 =fln~ W)= fuln) ~V =d- (1 ~ V),
and indivisibility of £ implies d = 1. Hence, the degree of f is one. O
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REMARK 2.4. The argument actually shows that the degree of map
f is one merely if it induces isomorphisms of free part of H"** and if
some indivisible element ¢’ € H;(N') belongs to the image of fi.

LeEMMA 2.5. Suppose N is a codimension-(k — 1) PL o-fibrator with
sparsely Abelian fundamental group and x(N) # 0 such that N is t-
aspherical, where k < t 4+ 1. Suppose that p : M™% — B is an
N-like PL map defined on an orientable manifold M™%, Then B is a
k-manifold.

Proof. Focus on a star § about a typical vertex v € B, with cor-
responding link L. It suffices to show that the link L is a homotopy
(k — 1)-sphere. Being the image of L' = p~!(L) under an approximate
fibration, L must be a closed (k — 1)-manifold [3, Theorem 5.4]. See [4,
Lemma 2.1] about its being a sphere for k£ < 2. So we will assume k > 2.
We will show that 71(L) = 1; then L is a homotopy (k — 1)-sphere by
the t-asphericity of N. In fact, consider the exact sequence

= m(N) = m(L') — (L) = w1 (N) — -

For i < k —2 < t, we have m;(IN) 2 0. In the homotopy exact sequence
of the approximate fibration p | L/,

= (L) = m(N) - m (L) - m(L) — 1,

we have a trivial homomorphism m2(L) — 7 (N) and a monomorphism
m1(N) — m1(L’) because m1(N) is sparsely Abelian. Hence,

HI(L) = 7TZ(L) = Wi(L,) = ﬂ'i(S,) = 7Ti(.N') =0

holds for the same range. Here the third isomorphism is obtained by
the fact that the inclusion I’ — S’ = p~!(S) induces isomorphisms
mi(L') — m;(S') for i < k—2. The (k — 2)-connectivity of L assures that
L is a homotopy (k — 1)-sphere.

Assume that L were not simply connected. Then in the homotopy
exact sequence of the approximate fibration p|L’, m;(p~1(z)) — m1 (L)
could not be surjective for z € L . Form the covering ¢ : S} — S’ of &’
corresponding to the image of 71 (p~1(2)) — m (L) — m(S"). (Recall
that the second homomorphism is an isomorphism.) Let N; denote a
cover of N corresponding to the image of

m(p™}(2)) = m(S") = m((p7 (v)) = m(N).

The inclusion i = ko j : p~1(z) — & lifts to iy : p~1(z) — S}, which
induces a m-epimorphism. Here j : p~'(z) — L} and k : L}, — S} are
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inclusions. Consider
St(~ Nr)
q

p )~ N) —— &

Case 1: [m(5);ix(mi(N))} = o0.

Since 71 (V) is sparsely Abelian, in the homotopy exact sequence of
the approximate fibration p|L’, j : p~}(z) — L/ induces a m —monomor-
phism and & : L} — S} induces a 7 —isomorphism, and so ¢; induces a
m1—isomorphism. Set L} = ¢~!(L'); L} is partitioned into copies of the
various p~1(z), and the associated quotient map p : L) — Ly can be
viewed as an N-like PL map, which is an approximate fibration, since
locally over the base it looks just like p|L’. Inspection of the homotopy
exact sequence for p reveals that m((Ly) is trivial — m(N) — mi (L))
is surjective because 71 (L)) — m1(S}) is an isomorphism. Since N is
t-aspherical, we have m;(Ly) =0 for 1 < ¢ < k — 2. Being L; an infinite
covering space of L, Ly is contractible by the Hurewicz theorem. The
approximate fibration L) — Ly shows that L, has the same homotopy
type as N. We will show that H;(N;) is finitely generated for all 4.
For ¢ = 0,1, H;(Ny) is obviously finitely generated. Assume H;(Ny) is
finitely generated for j < i. Consider the homology exact sequence for
the pair (S}, L));

Hi(Ly) — Hi(S7) — Hi(Sg, L)

H;(L}) = H;(N) and H;(S}, L)) & HYE=4(Ny) 2 H; 4 (Ny) are finitely
generated. Hence, H;(S}) = H;(Np) is finitely generated. By Milnor
[10], x(N) = 0. This is impossible.

Case 2: [m1(5");i4(m(N))] < o0.

From the above diagram in the case 1, ¢y induces a m-isomorphism.
In the homotopy exact sequence of the approximate fibration L} — Ly,
Ly is simply connected. Like the argument that L is a homotopy (k—1)-
sphere when L is simply connected, by the t-asphericity of N and the
Poincaré Duality , Ly is a homotopy (k — 1)-sphere and i; induces ;-
isomorphism for 1 < ¢ < ¢. By the Whitehead theorem, (i7)« : Hi(N) —
H;(S7) is an isomorphism for 1 < ¢ < ¢. Lemma 2.1 implies that iy is
a degree one map. Since degree of iy is 1 and degree of ¢ is positive,
Gi(N) > Bi(Nr) > Bi(N) for all i. Then x(N) = x(Ny) and ¢ is a
homeomorphism. Consequently, i : N — S’ has degree 1 and induces
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a mi-isomorphism. Hence, m1(L) = 1 and L is a homotopy (k — 1)-
sphere. O

PROPOSITION 2.6. Suppose N is a closed hopfian n-manifold with
sparsely Abelian, hopfian fundamental group and x(N) # 0 such that
N is t-aspherical. Then N is a codimension-(t + 1) PL o-fibrator.

Proof. 1t is known that N is a codimension-2 fibrator provided N is a
closed hopfian manifold with hopfian fundamental group and x(N) # 0
[2]. By induction we assume that N is a codimension-(k — 1) PL o-
fibrator. Suppose p : M™% — B is an N-like PL map defined on
an orientable manifold M™% where k¥ < t + 1. By Lemma 2.5, B is
a k—manifold. We can restrict p : M™* — B so M represents the
preimage of the star S of an arbitrary vertex v € B. Let L denote
the associated link and L' = p~!(L). From the homotopy exact se-
quence of the approximate fibration p|L’, the inclusion p~1(z) — L’
induces a 71—isomorphism. Then p~1(z) — M — p~!(v) induces a
7 —isomorphism. By the t-asphericity of N and the Whitehead theorem,
p~1(2) — M — p~1(v) induces isomorphisms H;(p~1(2)) — Hi(p~(v))
for all 1 < i < t. By Lemma 2.1 and [6, Corolary 2.2], p is an approxi-
mate fibration. O

COROLLARY 2.7. Suppose N = N1#Na(# RP"#RP" ) is a closed
hopfian n-manifold with x(N) # 0 such that N is t-aspherical and
m1(Ne) & Zy (e =1,2). Then N is a codimension-(t+1) PL o-fibrator.

Proof. 1t is known that 71 (N) is hopfian and 71 (V) has no nontrivial
abelian normal subgroup, and so it is sparsely Abelian. O

The (t+1)-sphere, a PL o-fibrator in codimension-(¢+1) but not in
codimension-(t+2), illustrates the sharpness of Proposition 2.6. The
product of any PL manifold in Corollary 2.7 and the (t+1)-sphere gives
additional examples.

Our concluding results address PL fibrator properties, not simply PL
o-fibrator properties. It involves the following approach for investigating
non-orientable manifolds introduced in [8]. Let N be a closed n-manifold
which has a 2-to-1 covering. Consider the covering space Ny of N
corresponding to H, where H = (\;,; H; with [m(N) : H;] =2 for i €
I ={i:[m(N): H;] =2}. The index set I is finite, and Ny is a closed
orientable n-manifold, since every (finite) covering of an n-dimensional
orientable manifold is again orientable and all non-orientable manifolds
have 2-to-1 orientable coverings. A closed manifold N is s-hopfian if
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N is hopfian when N is orientable, and Ny is hopfian when N is non-
orientable, where Ny is the covering space of N corresponding to H =
(Mier H; with [ = {i: (m1(N) : H;] = 2}. From now on, we reserve the
symbols H and Ny to represent the above. Although an orientable N
must be hopfian when Ny is, the converse is unknown. In a related
setting, index 2 subgroups of hopfian groups need not be hopfian.

LEMMA 2.8. Suppose N is a codimension-(k — 1) PL fibrator with
sparsely Abelian fundamental group and x(N) # 0 such that N is t-
aspherical, where k < t + 1. Suppose that p : M"t%* — B¥ is an N-like
PL map defined on a manifold M™%, Then B is a k-manifold.

Proof. Focus on a star S about a typical vertex v € B, with cor-
responding link L. It suffices to show that the link L is a homotopy
(k — 1)-sphere. As in the proof of Lemma 2.5, it suffices to show that
m(L) = 1. Let z € L. In the homotopy exact sequence of the approxi-
mate fibration p|L’,

m(L) — m(p~H(2)) = m(L') = m(L) — 1,

we have m1(L') = m1(S") = m1(p~'(v)) by the general position for the
first isomorphism. :

If L were not simply connected, the inclusion induced homomorphism
m1(p~1(2)) — m (L) could not be surjective. Form the covering q :
Sy, — 8 of §' corresponding to the subgroup H of m1(S') = m(N).
Consider

Ng ~q ' (p'(2))c —— Sy —2- ¢ (p~ (v)) =~ Nu

ql q q|

pi(z) — s B piw),

i

where Np is the cover of N corresponding to H and Nk is the n-
manifold corresponding to a component of ¢~ !(p~!(z)). Then Nk is a
covering space of Ny and orientable. Since m; (V) is sparsely Abelian,
1 induces a 7-monomorphism, and so does 4. To show that 7 induces
a mi-isomorphism, it suffices to show that 7 induces a 71 —epimorphism.
Suppose otherwise. Take the covering © : S%;; — S}, corresponding to
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ix(m1(g " (p7(2))c)). Now consider

Sur & 0 ¢ (p (v))) ~ Ny
v Ie Sl
Ny = ¢~ L (p~3(2))o —— Sy —F— g7} (p~L(v)) ~ Ny
q| q ql
piz) — s’ E ().

Here, ¢* and R* are liftings of 7 and Ro O, respectively.

If © is the infinite covering map, then we have the conclusion by
following the proof of the case 1 in Lemma 2.5. So we consider that © is
the finite covering map. Since 7* induces.a my—isomorphism, Ly is the
homotopy (k — 1)-sphere as in the proof of Lemma 2.5. According to
Lemma 2.1, R* o4* is a degree one map. Because of x(N) # 0, Ny, Nk
and Ny are the same homotopy type. Hence, Ro7 and Roi are degree
one maps and induce 7; —isomorphisms. O

As a result, we have the following main theorem.

THEOREM 2.9. Suppose N is a closed s—hopfian n-manifold with
sparsely Abelian, hopfian fundamental group and x(N) # 0 such that
N is t-aspherical. Then N is a codimension-(t + 1) PL fibrator.

Proof. 1t is known that N is a codimension-2 fibrator provided N
is a closed s-hopfian manifold with hopfian fundamental group and
X(N) # 0 [9, Proposition 2.4]. By the induction we assume that N
is a codimension-(k — 1) PL fibrator(k > 3). Suppose p : M™% — B is
an N-like PL map defined on a manifold M™* where k < ¢+ 1. By
Lemma 2.8, B is a k-manifold. Upon forming the cover 6 : My — M
corresponding to the image of H C m(N) & m(p~!(v)) in m (M), we
see pof : My — B is an Ny-like PL map and My is orientable, since it
covers all possible 2-1 coverings of M. Following the proof of Proposition
2.6, po @ and p are approximate fibrations. O

COROLLARY 2.10. Every closed (n— 2)-aspherical n-manifold N with
sparsely Abelian, hopfian fundamental group and x(N) # 0 is a codimen-
sion-(n — 1) PL fibrator.

Proof. Such a manifold is a closed s—hopfian manifold. O

COROLLARY 2.11. Every closed aspherical manifold N with hopfian
fundamental group and x(N) # 0 is a PL fibrator.
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Proof. The fundamental group of such a manifold has no nontrivial
Abelian normal subgroup [11] so that 71 (V) is sparsely Abelian. O
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