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FIXED POINTS OF COUNTABLY CONDENSING
MAPPINGS AND ITS APPLICATION TO
NONLINEAR EIGENVALUE PROBLEMS

IN-Sook Kim

ABSTRACT. Based on the Schauder fixed point theorem, we give a
Leray-Schauder type fixed point theorem for countably condensing
mappings in a more general setting and apply it to obtain eigen-
value results on condensing mappings in a simple proof. Moreover,
we present a generalization of Sadovskii’s fixed point theorem for
countably condensing self-mappings due to S. J. Daher.

0. Introduction

The study of condensing operators has been one of the main objects
of research in nonlinear functional analysis; see [1, 2]. The celebrated
fixed point principle of B. N. Sadovskii [11] states that a condensing
operator of a closed, bounded and convex subset of a Banach space into
itself has a fixed point. S. J. Daher [3] showed that the Sadovskii result
remains valid for countably condensing operators, that is, condensing
only on countable subsets. This approach is useful for finding solutions
of nonlinear differential equations in Banach spaces; see [9]. In this point
of view, M. Vath [13] established a fixed point index theory for count-
ably condensing operators and gave a generalization of the Fredholm
alternative as an application.

In the present paper, motivated by H. Monch [9], we first give a fixed
point theorem of the Leray-Schauder type for countably condensing op-
erators in a more general setting, which is closely related to eigenvalue
problems for nonlinear operators. Using the main result, we prove the
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existence of a positive eigenvalue of condensing mappings. It is remark-
able that this proof is much simpler than that in the usual method
depending on a fixed point theorem for compact mappings, as we will
present two different proofs below. Finally, from the Schauder fixed
point theorem, we deduce a new fixed point theorem for countably con-
densing self-mappings, which generalizes some known results on con-
densing mappings. An earlier version of this theorem is known due to
S. J. Daher [3]; see also [9].

For a subset K of a topological vector space E, the interior, the
closure, the convex hull, and the closed convex hull of K in E are denoted
by int K, K, co K, and @ K, respectively. If K ¢ U C E, the boundary
and the interior of K in the relative topology of U are denoted by dy K
and inty K, respectively. If U = E, we write 0K for g K. A set K in
E is called a wedge if az + by € K whenever a,b € [0,00) and z,y € K.

Let E be a topological vector space and M a collection of nonempty
subsets of F with the property that for any M € M, the sets co M, MU
{z} (z € E), and every subset of M belong to M. A nonnegative real-
valued function a : M — R is said to be a measure of noncompactness
on E provided that the following conditions hold for any M € M:

(1) a(eo M) = o(M);
(2) if z € E, then o(M U {z}) = o(M); and
(3) if N C M, then a(N) < a(M).

The measure o of noncompactness on E is said to be regular provided
a(M) = 01if and only if M is precompact; positive homogeneous provided
tM C M and o(tM) =ta(M) for all t > 0 and M € M.

Let Y be a nonempty subset of a Banach space F and « a measure
of noncompactness on E. A mapping f : Y — F is said to be countably
condensing provided that if A is any countable subset of Y such that
a(A) < a(f(A)), then f(A) is relatively compact. f:Y — E is said to
be condensing provided that if A is any subset of ¥ such that a(A) <
a(f(A)), then f(A) is relatively compact. Given k >0, f : Y — E is
said to be (a, k)-condensing if a(f(A)) < ka(A) for each set A in Y; see
3, 6].

Recall that if « is regular and k£ < 1 then every (a, k)-condensing
mapping is condensing.
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1. A Leray-Schauder type fixed point theorem for countably
condensing mappings

Motivated by H. Ménch, we give a Leray-Schauder type fixed point
theorem for countably condensing mappings in a more general setting
whose proof is based on the Schauder fixed point theorem; see [9, The-
orem 2.2].

THEOREM 1.1. Let E be a Banach space, D a subset of F, and U
a closed convex subset of E with 0 € D C U such that D is a closed
neighborhood of 0 in the relative topology of U. Let f : D — U be
a countably condensing continuous mapping that satisfies the Leray-
Schauder boundary condition:

x # M (z) for every x € Oy D and X € (0,1).
Then f has a fixed point in D.
Proof. Let
Do ={0} and Dy4+1 =co({0}U f(D,ND)) foreachne NUJ{0}.

Then the sequence { Dy, }nenuoy is increasing with respect to inclusion

and the sets D,, are relatively compact because f is continuous. For each

n € NU {0}, there exists a countable set C, such that D, N D = C,,.
Set V = U,>qDn and C = |J,,5cCrn. Since each D,, is convex and

{D.} is increasing, we obtain that V is convex and

V= | Dn1=J co({0} U f(Dn N D)) = co ({0} U f(V N D)).

n>0 n>0

For the countable set C, we have

ccljCnc|JDnnD)cV =e({0}uf(VND))

n>0 n=0
=0 ({0} U f(|J (Dnn D)) ceo ({0} U F(O)),
n>0

where for the last inclusion we use the fact that f is continuous on the
compact set D,, N D. Since « is a measure of noncompactness on F and
f is countably condensing, it follows that

a(C) < afeo ({0} U £(C))) = a(f(C))
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and hence f(C) is relatively compact. Since & ({0} U f(C)) is compact,
we see that V' is also compact.

Now we may suppose without loss of generality that f has no fixed
point in Oy D. Then z # Af(z) for all z € dyD and X € [0,1]. Let M =
U reo,1) Fix (Af), where Fix denotes the fixed point set of an operator.
Then M is closed in F and M N8y D = (. Hence it follows from V ¢ U
that

(MnV)Néx(DNV)C (MNV)N(yDNV) =0.

Since the sets M NV and 8(D N V) are disjoint and closed relative
to the compact set V, there exists a continuous function y : V — [0,1]
such that (M NV) = {1} and p(8x(DNV)) = {0}. Set A=DNV
and define a mapping g: V — V by

w(z) f(z) if reA
9(@) = 0 if eV \intyA.

Since g is continuous on the compact convex set V, by the Schauder fixed
point theorem [12], g has a fixed point zo € V. From 0 € (inty D)NV C
inty7 A it follows that o = g(z¢) = p(xo) f(xo) which implies zp € MNV
and so pu(xg) = 1. Thus, z¢ is a fixed point of f. This completes the
proof. O

As a special case, we obtain a fixed point theorem of the Rothe type
[10] for countably condensing mappings.

COROLLARY 1.2. Let K be a closed neighborhood of 0 in a Banach
space E such that K is starshaped with respect to 0. If f : K — E is
a countably condensing continuous mapping with f(0K) C K, then f
has a fixed point in K. :

Proof. From f(OK) C K and the starshapedness of K it follows that
f(z) # A7tz for every x € K and X € (0,1). Applying Theorem 1.1
with U = FE, f has a fixed point. O

CoOROLLARY 1.3. Let K be a closed neighborhood of 0 in a Banach
space EI. Let f : K — E be a compact continuous mapping that has no
fixed point in K. Then there exist an x € 0K and a A € (0, 1) such that

z = Af(x).

Proof. This is an immediate consequence of Theorem 1.1 since f is
clearly countably condensing. ‘ O
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COROLLARY 1.4. Let K = {z € E : |z| < 1} be the closed unit
ball in an infinite-dimensional Banach space E. Let f : 0K — E be a
compact continuous mapping such that

cf(OK)NK =0  for some ¢ > 0.

Then there exist an ¢ € 0K and a A > 0 such that f(z) = \z.

Proof. Note that 0K is a retract of K; see [5]. Let r : K — 0K be a
retraction of K on 0K. Define a mapping g : K — E by

g(z) == f(r(z)) for z € K.

Then g is a compact continuous mapping and cg(K) N K = (. Hence
the compact continuous mapping go : K — FE given by go(z) = cg(z)
has no fixed point in K. By Corollary 1.3, there exist an z € K and
a t € (0,1) such that = = tgo(z). Setting XA = (ct)~!(> 0), we conclude
that f(z) = Az. This completes the proof. O

2. Positive eigenvalues of condensing mappings

In this section, we show the existence of a positive eigenvalue of con-
densing mappings in two different approaches. For the case of set-valued
maps, we refer to [6, Theorem 2].

THEOREM 2.1. Let E be a Banach space, K a closed neighborhood
of 0 in E, and U a closed wedge in E. Let o« be a regular positive
homogeneous measure of noncompactness on E, k > 0, and f : KNU —
U an (a, k)-condensing continuous mapping. Suppose that there is a
real number ¢ > k such that

F(KNU)Nc(intK) = 0.

Then there exist an x € 0K NU and a A > ¢ such that f(z) = Az.
Proof. Let a mapping g : K NU — U be defined by

g(z) == %f(m) foree KNU.

Then g is (e, k/c)-condensing because « is positive homogeneous and
f is (a, k)-condensing. Since « is regular and k/c < 1, it follows that
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g is condensing. Hence g is trivially countably condensing. Without
loss of generality we may suppose that ¢ has no fixed point in K NU.
Otherwise, there exists an x € 0K N U such that 2 = g(z) because
g(KNU)N int K = (. Theorem 1.1 implies that there are an x € dKNU
and a t € (0, 1) such that x = tg(z), because of Oy (K NU) C 0K NU.
Setting A = ¢/t(> ¢), we conclude that f(z) = Az. This completes the
proof. I

In fact, Theorem 2.1 was easily obtained from Theorem 1.1 concerning
countably condensing mappings. But if we use a fixed point theorem for
compact mappings in the usual method we often do about condensing
mappings, the proof is not so simple as follows:

Another Proof. Define a mapping g : KNU — U by
1
g(z) == Ef(x) forze KNU.

Then g is condensing. Observe that there exists a closed convex subset
S of E with 0 € S such that g(K N U N S) is a relatively compact
subset of UNS; see [7]. Without loss of generality we may suppose that
90 = 9|knuns has no fixed point in KNUNS. Set R:=U NS and

X1 ={z e KNR:z=tg(z) forsomete [0,1]}.

Then X; is a compact subset of E. Now we claim that X;N(0KNR) # (.
We suppose to the contrary that X; N (0K N R) = ). Since 0K N R is
closed in E, there exists a continuous function u : £ -- [0, 1] such that
p(z) =1forallz € 9KNR and p(z) =0 for all z € X;. Let a mapping
h: R — R be defined by

oy - | A H@)@) i zeKNR
(@) = 0 if z€R\intK.

Then A is a compact continuous mapping on R. By Himmelberg’s fixed
point theorem [8], h has a fixed point zo € R; that is, zo = h(xo).
Hence we have 29 € X; and so p(zg) = 0 and hence xg = go(xp) which
contradicts our assumption that gg has no fixed point in X N R.
Consequently, we have shown that X; N (0K N R) # 0. This means
that there exist an x € 0K N R and a ¢ € [0,1] such that z = tg(z).
From z # 0 it follows that ¢ # 0. Setting A = ¢/#(> ¢), the conclusion
follows. This completes the proof. O

The following particular form of Theorem 2.1 is given in [6, Folgerung
6].
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COROLLARY 2.2. Let K be the closed unit ball in a Banach space
E, o the Kuratowski measure of noncompactness on E, and k > 0. Let
f : K — E be an («, k)-condensing continuous mapping and ¢ > k a
real number such that |f(z)| > ¢ for all x € K. Then there exist an
x € OK and a A > ¢ such that f(z) = A\z.

Proof. Note that the Kuratowski measure o of noncompactness on E
is regular and positive homogeneous; see [1, 2]. Theorem 2.1 is applica-
ble. O

3. A fixed point theorem for countably condensing self-
mappings

The following fixed point theorem for countably condensing mappings
is due to S. J. Daher in the special case of the Hausdorff measure of
noncompactness; see [3, Theorem]. Here we follow the method of proof
that H. Monch suggests in [9, Theorem 2.1].

THEOREM 3.1. Let K be a nonempty closed convex subset of a Ba-
nach space E. If f : K — K is a countably condensing continuous
mapping, then f has a fixed point in K.

Proof. Fix xy € K. Let
Do = {zo} and D41 =co({zo}U f(Dy,)) foreachn>0.

Then {D,, },>0 is increasing and the sets D,, are relatively compact. For
each n > 0, there exists a countable set C, such that D, = C,,. Set
V =U,>¢Dn and C = J,,50 Crn. As in the proof of Theorem 1.1, we

conclude that V =@ ({zo} U f(V)) and the convex set V is compact.
From the continuity of f it follows that f(V) Cc V. By the Schauder
fixed point theorem, the restriction f|3 has a fixed point and so does f.
This completes the proof. O

The following result is just Sadovskii’s fixed point theorem [11] if « is
the Hausdorff measure of noncompactness on F and K has an additional
requirement that K is bounded.

COROLLARY 3.2. Let K be a nonempty closed convex subset of a
Banach space E. If f : K — K is a condensing continuous mapping,
then f has a fixed point in K.

The following is Darbo’s fixed point theorem for the so called k-set
contractions; see [4].
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COROLLARY 3.3. Let K be a nonempty, closed, bounded, and con-
vex subset of a Banach space F and « the Kuratowski measure of non-
compactness on E. If f : K — K is an (o, k)-condensing continuous
mapping with k < 1, then f has a fixed point in K.

Proof. This is an immediate consequence of Corollary 3.2 because f
is condensing. O
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