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SOME APPLICATIONS OF EXTREMAL
LENGTH TO ANALYTIC FUNCTIONS

Bo-Hyun CHUNG

ABSTRACT. We consider some applications of extremal length to
the boundary behavior of analytic functions and derive theorems in
connection with the conformal mappings. It shows us the usefulness
of the method of extremal length. And we present some geometric
applications of extremal length. The method of extremal length
lead to simple proofs of theorems.

0. Introduction

The method of extremal length is a useful tool in a wide variety of
areas. Especially, it has been successfully applied to conformal map-
pings and analytic functions of a complex variable. Extremal length
was introduced as a conformally invariant measure of curve families.
This development appeared in Ahlfors and Beurling [3].

The purpose of this paper is to apply the extremal length of a curve
family in the complex plane to the boundary behavior of analytic func-
tions of a complex variable. And we consider some geometric applica-
tions of extremal length. This method lead to simple proofs of theorems.

Throughout this paper, C denote the finite complex plane, D is a
domain (open and connected set) in C, g is an arbitrary function defined
on D (Def. 2.1), 8D is a boundary of D, and cl(D) is a closure of D.

The subject of this paper was suggested by professor Un Haing Choi,
to whom we are deeply grateful for all his advice.

1. Extremal length

Let I' be a family whose elements v are locally rectifiable curves (sim-
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ply, curves or arcs) in D, and let p(z) be a non-negative Borel measurable
function defined on C. Every curve 7 has a well-defined

(1) Linp) = [ pl@)ldel, 2= iy
v
which may be infinite, and D has a

@) A(D, p) = / /D () do dy # 0, co.

In order to define an invariant which depends on the whole set I", we
introduce

(3) L(T, p) = inf L(v, ),

where we agree that L(T', p) = oo in case I' is empty.

To obtain a quantity that does not change when the weight func-
tion p is multiplied by a constant, we form the homogeneous expression
[L(T, p)I*/A(D, p).

DEFINITION 1.1. ([1]) The extremal length of T" it D is defined by

(4) AT) = Ap(D) = sup [L(T, p))*/ A(D, p),

where p is subject to the condition 0 < A(D, p) < o, obviously 0 <
AT) € o0.

REMARK 1.2. (i) Ap(I') depends only on I' and not on D. Accord-
ingly, we shall simplify the notation to A(T") [1].

(ii) Since almost every curve in C is rectifiable, the non-rectifiable
curves of a family I' have no influence on the extremal length of T
Accordingly, we shall simplify the terminology to curve or arc [14].

There are two special cases in which the extremal length is very easy
to determine explicitly.

PROPOSITION 1.3. (a) ([2]) Let B be a rectangle of sides a and b.
Let T be the family of arcs in B which join the sides of length b. Then

A(T) = a/b.
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(b) ([7]) Let A be the annulus A = {z|a < |z| < b}. Let T be the
family of arcs in A which join the two contours. Then

A(T) = (1/2m)log (b/a).
In fact, for any p(z), we have

b
/ pdr > L(T, p), // pdrdf > 2xL(T, p).
a A

Then, by the Schwarz inequality ([8]),
4L, )P < ([ [ par doy?
A

g[//Apz(l/r)drdc’)][//ArdrdO]

= lerlog @/a)] [ orar o]

This proves A\(I') < (1/27)log (b/a).
Equality for p = 1/r, we have

LT, 1/r) =log(b/a), A(A,1/r)=2mlog(b/a).

Thus A(T') > (1/27) log (b/a).

The conformal invariance of extremal length is an immediate conse-
quence of the definition.

ProPOSITION 1.4. ([12], Conformal invariance) Let z* = f(z) be a

1-1 conformal mapping on D upon a domain D* and I" a family of curves
on D. Then

PROPOSITION 1.5. ([1], Comparison principle) For two curve families
I'y, Ty, if every o € T2 contains a vy, € 'y, then

AT1) < A(T2).
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Indeed, both extremal lengths can be evaluated with respect to the
same D. For any p in D it is clear that L(I'g,p) > L(I'1,p). These
minimum lengths are compared with the same A(D, p).

REMARK 1.6. (i) Briefly, the set I'; of fewer or longer curves has the
larger extremal length [1].

PROPOSITION 1.7. ([12]) Suppose that there exist disjoint open sets
G, containing the curves in T'y,. If U,T',, C T, then

" 1/ATL) < 1/A(T).

n

2. Some boundary behavior of conformal mappings

DEFINITION 2.1. ([10]) By an arbitrary function g, we mean a (single-
valued) function whose domain is a subset of C and whose range is on
the Riemann sphere 2.

DEFINITION 2.2. ([5]) Let A be a curve at 29 € cl(D). Then the
cluster set of g at zg along A, denoted by Cx (g, 20), is defined to be the
set of all points w €  with the property that, for some sequence of
points {z,} on A converging to zg, we have

lim g(z,) = w.
n—>00

A value w is called a cluster value of g at 2y along A. It follows readily
that Ca(g,20) is a nonempty closed subset of €.

We consider some applications of extremal length to conformal map-
pings. A purely function-theoretic proof of the following theorem is
difficult. The use of extremal length, however, makes the proof trivial.

THEOREM 2.3. Let D be a Jordan domain in C, 8D its boundary.
Let zp,21 be two distinct points of D, and denote by C) and Cy the
two curves between zg and z;, where C1,Cy C 0D. Let f(z) be a 1-1
conformal mapping defined on D satisfying

[ ey < oo

If f(z) has the cluster values w; and wy (w1, w2 # 00) for some sequence
of points {z,} on C1 and Cy converging to zy respectively, then

W1 = Wwa.
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In our discussion we will need the followings.

DEFINITION 2.4. ([1]) A non-negative Borel measurable function p(z)
will be called allowable if it satisfies the condition (2).

DEFINITION 2.5. ([1]) Let D be a simply connected domain in C. A
crosscut of D is a Jordan curve -y in D which in both directions tends
to a boundary point.

LEMMA 2.6. ([13]) Let R be a ring domain in C and let Ry and
R; denote the bounded component and unbounded component of R
the complement of R, respectively. Let ORy and R, denote the two
components of the boundary of R, and let T'g be the family of all curves
in R connecting ORy and OR;. Then

)\(FR) =0

if and only if Ry consists of a single point.

LEMMA 2.7. ([4, ch.4]) Let R, Ry, R1 and 'r be as in Lemma 2.6.
We say that the closed curve v in R separates Ry and R, if -y has non-
zero winding number about the points of Ry. Let I's be the family of
all closed curves in R which separate Ry and R,. Then

ATR) - A(Ts) = 1.

We say that A(I's) is the conjugate extremal length of \(T'g).

ProOOF OF THEOREM 2.3. Let I' be the family of all crosscuts ~ in
Rp connecting points of C; and points of Cy, where

Rp={z|0< |z — 29| <rmo}ND.

Here rq is a sufficiently small positive real number. Then
for —wal < inf [ I @)l
ver J,

There remains to show that

Q int [ 1761l = 0.
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Since
R={z|0<|z— 2| <70}

is a ring domain, by Lemma 2.6, we see that
A(l'r) = oo,

where I'g is as in Lemma 2.6.

Suppose now that we are considering I'g, the family of all simple
closed curves in R separating zo from {z ||z — 29| = ro}. Then A(I'g) is
the conjugate extremal length of A(I'g). Hence by Lemma 2.6,

ATg) =0.

And clearly,
I'<TIg.

Thus by the comparison principle of extremal length (Proposition 1.5),
we see that

(6) A(T) = 0.

On the other hand, if we choose the allowable function p(z) = |f/(z)|
on D, then

(7) J[ e dsdy <o

Hence by (6), (7), we have (5).
This completes the proof of the theorem. a

3. Geometric applications of extremal length

There are a number of purely geometric applications of extremal
length. The simplest example concerns the ring domain.

THEOREM 3.1. Let R,0Ry and OR, be as in Lemma 2.6. Let a be
the length of the shortest arc in D connecting ORy and OR;. Let b be
the length of the Jordan curve, 3Rg. Then

a-b<S8.
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where S is the area of R.

ProoF. The purely geometric proof of this theorem is difficult. The
use of extremal length, however, makes the proof trivial.
Let ' and I's be as in Lemmas 2.6 and 2.7 respectively. Then by
Lemma, 2.7,
ATg)-ATs) =1.

On the other hand, if we choose the non-negative Borel measurable
function p = 1, then A(T'r) and A(I's) has the following lower bounds
respectively. That is,

(a*/5) - (v*/8) = {L(Tr, 1)}* / A(D, 1)] - {L(Ts, 1)}* / A(D,1)] .
< A(Tr)-A(T's)
=1,

and the theorem follows at once. O

THEOREM 3.2. Suppose that we have a set of n disjoint general
quadrilaterals Qg, for k = 1,2,... ,n, contained in the annulus A =
{z|r < |z2] < R}, (0 < r < R, R # o) and bounded by Jordan curves,
each of which has an arc, in common with each of the circles {z | |z| = r}
and {z||z| = R} (the Qi can be regarded as strips extending from
the inner to the outer circle). If these domains Q; are mapped onto
rectangles By, with sides equal respectively to a and by in such a way
that the arcs referred to are mapped into sides of lengths ay, then

8) > ax/by, < 27/ log(R/r),

k=1

where the equality holds only if the Q) are domains of the form {z|r <
|z2] < R, ¢r < argz < ¢r11} completely filling the annulus.

Proor. The method of extremal length considered leads to a simple
proof of the inequality (8).

We can map an arbitrary general quadrilateral conformally onto a
rectangle ([9, p.15]). Let w = fi(z) be 1-1 conformal mappings on Qj
upon By, respectively. Let T' be the family of arcs in A which join the
two boundary circles, and let 'y, be the family of arcs in ¢} which join
the two sides of QQx C JA. Then by the conformal invariance of extremal
length (Proposition 1.5) and Proposition 1.3(a},

(9) A(Tk) = Alfe(Tx)] = br/ax.
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By the hypothesis, there exist disjoint open sets Qr(k = 1,2,... ,n)
containing I'y, and U,y C . Hence by Proposition 1.7,

n

(10) > /AT < 1/AD).

k=1

Therefore by Proposition 1.3(b), (9) and (10), we obtain (8).
The proof is complete. O

Now, we will prove alternatively the well-known result by making use
of extremal length. In particular, this method shortens the length of the
proof significantly as we shall see by comparing the following proof with
that of Theorem 14.22 in [11].

THEOREM 3.3. ([11]) Let A(r,R) = {z|r < |2| < R}, (0 < r <
R, R # c0). Then Aq(r1, R1) and Ay(re, Ry) are conformally equivalent
if and only if

(11) Ry/r1 = Ry/ra.

PrOOF. (Method of extremal length) Since the proof of sufficient
condition is trivial, we discuss the proof of necessary condition. Let I'a
be the family of arcs in A(r, R) which join the two contours. Then by
Proposition 1.3(b),

(12) ATA) = (1/27)log(R/T).

Suppose that A;(r1,R1) and Ag(rg, R2) are conformally equivalent and
let f be a 1-1 conformal mapping on A;(r1, R1) upon As(ry, Rz). Then
by the conformal invariance of extremal length,

Hence by (12), (13), we obtain (11).
The proof is now complete. O
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