ON PREHERMITIAN OPERATORS

JONG-KWANG YOO AND HYUK HAN

ABSTRACT. In this paper, we are concerned with the algebraic representation of the quasi-nilpotent part for prehermitian operators on Banach spaces. The quasi-nilpotent part of an operator plays a significant role in the spectral theory and Fredholm theory of operators on Banach spaces. Properties of the quasi-nilpotent part are investigated and an application is given to totally paranormal and prehermitian operators.

1. Introduction

Throughout this note, let X be a Banach space over the complex plane \mathbb{C} and let $\mathcal{L}(X)$ denote the Banach algebra of all bounded linear operators on X. For a given $T \in \mathcal{L}(X)$, let $\sigma(T)$ and $\rho(T)$ denote the spectrum and the resolvent set of T, respectively. An operator $T \in \mathcal{L}(X)$ is said to be *prehermitian* if

$$\sup_{t\in\mathbb{R}}\|\exp(itT)\|<\infty,$$

where \mathbb{R} is the set of real numbers. An operator $T \in \mathcal{L}(X)$ is called normal-equivalent if there are two commuting prehermitian operators $A, B \in \mathcal{L}(X)$ such that T = A + iB. In [9], Lumer showed that an operator $T \in \mathcal{L}(X)$ is prehermitian if and only if there is an equivalent algebra norm $\|\cdot\|_1$ on $\mathcal{L}(X)$ such that T is a hermitian element of $\mathcal{L}(X)$ endowed with this norm. Also, it is known that $T \in \mathcal{L}(X)$ is normal-equivalent if and only if there is an equivalent algebra norm $\|\cdot\|_1$ on $\mathcal{L}(X)$ such that T is a normal element of $\mathcal{L}(X)$ endowed with this norm.

Received December 8, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 47A11, 47B40.

Key words and phrases: algebraic spectral subspace, analytic spectral subspace, local spectral radius, normal-equivalent and prehermitian operator.

We denote by $C^{\infty}(\mathbb{C})$ the Fréchet algebra of all infinitely differentiable complex valued functions defined on the complex plane \mathbb{C} with the topology of uniform convergence of every derivative on each compact subset of \mathbb{C} . An operator $T \in \mathcal{L}(X)$ is called a generalized scalar operator if there exists a continuous algebra homomorphism $\Phi: C^{\infty}(\mathbb{C}) \to \mathcal{L}(X)$ satisfying $\Phi(1) = I$, the identity operator on X, and $\Phi(z) = T$, where z denotes the identity function on \mathbb{C} . Such a continuous homomorphism Φ is in fact an operator valued distribution and it is called a spectral distribution for T. An operator $T \in \mathcal{L}(X)$ is said to be of class $C^2(\mathbb{C})$ if there exists a continuous algebra homomorphism $\Phi: C^2(\mathbb{C}) \to \mathcal{L}(X)$ satisfying $\Phi(1) = I$ and $\Phi(z) = T$. Such Φ is then called a continuous functional calculus for T. It is clear from Lemma 3.5 of [2] that normal-equivalent operators are of class $C^2(\mathbb{C})$. Conversely, if $T \in \mathcal{L}(X)$ is of class $C^2(\mathbb{C})$ then T is normal-equivalent. For, if $\Phi: C^2(\mathbb{C}) \to \mathcal{L}(X)$ is a continuous functional calculus for T then $A := \Phi(\text{Re}(\cdot))$ and $B := \Phi(\text{Im}(\cdot))$ are commuting operators of class $C^2(\mathbb{C})$ and hence prehermitian.

An operator $T \in \mathcal{L}(X)$ is called *decomposable* if for every open covering $\{U, V\}$ of the complex plane \mathbb{C} there exists a pair of T-invariant closed linear subspaces Y and Z of X such that

$$Y + Z = X$$
, $\sigma(T|Y) \subseteq U$ and $\sigma(T|Z) \subseteq V$,

where T|Y denotes the restriction operator of T on Y. Although decomposable operators generally have no functional calculus of Riesz, these operators possess many of the spectral properties of normal operators. It is known that if T is a prehermitian operator then T is a generalized scalar operator and hence decomposable [8].

The local resolvent set $\rho_T(x)$ of T at the point $x \in X$ is defined as the union of all open subsets U of \mathbb{C} for which there is an analytic function $f: U \to X$ which satisfies $(T - \lambda)f(\lambda) = x$ for all $\lambda \in U$. The local spectrum

$$\sigma_T(x) := \mathbb{C} \setminus \rho_T(x).$$

Clearly, the local resolvent set $\rho_T(x)$ is open, and the local spectrum $\sigma_T(x)$ is closed. For each $x \in X$, the function $f(\lambda) : \rho(T) \to X$ defined by $f(\lambda) = (T-\lambda)^{-1}x$ is analytic on $\rho(T)$ and satisfies $(T-\lambda)f(\lambda) = x$ for all $\lambda \in \rho(T)$. Hence the resolvent set $\rho(T)$ is always subset of $\rho_T(x)$ and hence $\sigma_T(x)$ is always subset of $\sigma(T)$. The analytic solutions occurring in the definition of the local resolvent set may be thought of

as local extensions of the function

$$(T-\lambda)^{-1}x:\rho(T)\to X.$$

There is no uniqueness implied. Thus we need the following definition.

An operator $T \in L(X)$ is said to have the *single-valued extension* property, abbreviated SVEP, if for every open set $U \subseteq \mathbb{C}$, the only analytic solution $f: U \to X$ of the equation $(T - \lambda)f(\lambda) = 0$ for all $\lambda \in U$ is the zero function on U. Hence if T has the SVEP, then for each $x \in X$ there is the maximal analytic extension of $(T - \lambda)^{-1}x$ on $\rho_T(x)$.

Given an operator $T \in \mathcal{L}(X)$ and an element $x \in X$,

$$r_T(x) := \limsup_{n \to \infty} \|T^n x\|^{\frac{1}{n}}$$

is called the local spectral radius of T at x. It is clear that

$$\max\{|\lambda|:\lambda\in\sigma_T(x)\}\leq r_T(x)$$

for all $x \in X$ but for operators without the SVEP, this inequality may well be strict. It is well known that if T has the SVEP and $x \in X$ is a non-zero element, then the compact set $\sigma_T(x)$ is non empty and the local spectral radius formula

$$r_T(x) = \max\{ |\lambda| : \lambda \in \sigma_T(x) \}$$

holds and the spectral radius

$$r(T) = \max\{r_T(x) \, : \, x \in X\}$$

by Proposition 1.2.16, Proposition 3.3.13 and Proposition 3.3.14 of [8]. Let $F \subseteq \mathbb{C}$, the analytic spectral subspace $X_T(F)$ of $T \in \mathcal{L}(X)$ is defined by

$$X_T(F) := \{ x \in X : \sigma_T(x) \subseteq F \}.$$

It is easy to see that $X_T(F)$ is a hyperinvariant linear subspace of X but need not be closed. An operator $T \in \mathcal{L}(X)$ is said to have *Dunford's property* (C) if $X_T(F)$ is closed for every closed $F \subseteq \mathbb{C}$. This condition plays an important role in the theory of spectral operators. It is well known that Dunford's property (C) implies the SVEP. Let $\ker T$ denote the kernel of T. Then it is easy to see that

$$\ker(T - \lambda) \subseteq X_T(\{\lambda\})$$

for all $\lambda \in \mathbb{C}$.

For a $F \subseteq \mathbb{C}$, consider the class of all linear subspaces Z of X which satisfy $(T - \lambda)Z = Z$ for all $\lambda \notin F$ and let $E_T(F)$ denote the span of all such subspaces Z of X. $E_T(F)$ is called an algebraic spectral subspace of T. It is clear that

$$(T - \lambda)E_T(F) = E_T(F)$$
 for all $\lambda \notin F$

as well so that it is the largest linear subspace with this property. Given an operator $T \in \mathcal{L}(X)$, the quasi-nilpotent part of T is the set

$$H_0(T):=\{x\in X\,:\, \lim_{n\to\infty}\|T^nx\|^{\frac{1}{n}}=0\}.$$

It is clear that $H_0(T)$ is a linear subspace of X and in fact hyperinvariant subspace of T. In general, $H_0(T)$ is not closed. It follows from Theorem 1.5 of [12] that T is quasi-nilpotent if and only if $H_0(T) = X$. Moreover, if T is invertible then $H_0(T) = \{0\}$. The systematic investigation of the space $H_0(T)$ was initiated by Mbekhta [10] after an earlier work of Vrbová [12]. As shown by Mbekhta, quasi-nilpotent part of an operator play a significant role in the local spectral and Fredholm theory of operators on Banach spaces.

2. Main results

PROPOSITION 1. Let T be a prehermitian operator on a Banach space X and $x_0 \in X$. Then $\lim_{n\to\infty} ||T^n x_0||^{\frac{1}{n}} = 0$ if and only if $Tx_0 = 0$. And $\ker T$ is the quasi-nilpotent part of T. Moreover,

$$H_0(T) = X_T(\{0\}) = E_T(\{0\}) = \ker T = \{x \in X : r_T(x) = 0\}.$$

PROOF. It is easy to see that

$$\ker T \subseteq X_T(\{0\}).$$

Since prehermitian operators are of class $C^2(\mathbb{C})$, T is a generalized scalar operator. From Theorem 2.7 of [14], we have

$$X_T(\{0\}) = \{x \in X : \lim_{n \to \infty} ||T^n x||^{\frac{1}{n}} = 0\}.$$

Since $X_T(\{0\})$ is a closed hyperinvariant subspace of T,

$$\sigma(T|X_T(\{0\})) = \sigma(T) \cap \{0\}.$$

It follows that $T|X_T(\{0\})$ is quasinilpotent and prehermitian. As there is an equivalent algebra norm on $\mathcal{L}(X_T(\{0\}))$ such that $T|X_T(\{0\})$ is a hermitian element in $\mathcal{L}(X_T(\{0\}))$ endowed with this norm. By Theorem 10.17 of [3] we have

$$T|X_T(\{0\}) = 0.$$

Hence

$$X_T(\{0\}) \subseteq \ker T$$
.

Since T is a generalized scalar operator,

$$H_0(T) = \{x \in X : r_T(x) = 0\}$$

by Proposition 3.3.17 of [8]. This completes the proof.

A bounded linear operator T on a Banach space X is said to be totally paranormal if

$$||(T - \lambda)x||^2 \le ||(T - \lambda)^2 x|| \, ||x||$$

for all $x \in X$. It is well known that if T is totally paranormal then

$$\ker (T - \lambda) = \ker (T - \lambda)^2$$

for all $\lambda \in \mathbb{C}$ and so T has the SVEP. Also it is clear that every hyponormal operator on a Hilbert space H is totally paranormal.

THEOREM 2. Let T be a totally paranormal operator on a Banach space X and $x_0 \in X$. Then $\lim_{n\to\infty} \|T^n x_0\|^{\frac{1}{n}} = 0$ if and only if $Tx_0 = 0$. Moreover,

$$X_T(\{\lambda\}) = \ker(T - \lambda) = H_0(T - \lambda)$$

for all $\lambda \in \mathbb{C}$. In particular, ker T is the quasi-nilpotent part of T.

PROOF. Let $x \in X$ be a unit vector. Since T is totally paranormal,

$$||(T - \lambda)x||^2 \le ||(T - \lambda)^2 x|| \, ||x||.$$

For any $n = 2, 3, \ldots$, we obtain

$$||(T - \lambda)^n x||^2 = ||(T - \lambda)(T - \lambda)^{n-1} x||^2$$

$$\leq ||(T - \lambda)^2 (T - \lambda)^{n-1} x|| \, ||(T - \lambda)^{n-1} x||$$

$$= ||(T - \lambda)^{n+1} x|| \, ||(T - \lambda)^{n-1} x||.$$

It follows from Lemma 1.2 of [4] that

$$\|(T - \lambda)x\|^n \le \|(T - \lambda)^n x\|$$

for any unit vector $x \in X$ and $n \in \mathbb{N}$. Hence, if $\lim_{n \to \infty} ||(T - \lambda)^n x||^{\frac{1}{n}} = 0$ then $(T - \lambda)x = 0$. Since T has the SVEP, we have

$$X_{T}(\{\lambda\}) = X_{T-\lambda}(\{0\})$$

$$= \{x \in X : \lim_{n \to \infty} \|(T - \lambda)^{n} x\|^{\frac{1}{n}} = 0\}$$

$$= H_{0}(T - \lambda).$$

Therefore we have

$$H_0(T-\lambda) = X_{T-\lambda}(\{0\}) \subseteq \ker(T-\lambda)$$

for all $\lambda \in \mathbb{C}$. This completes the proof.

Let X and Y be complex Banach spaces over the complex field \mathbb{C} and let $\mathcal{L}(X,Y)$ denote the space of all continuous linear operators from X to Y. For given operator $T \in \mathcal{L}(X)$ and $S \in \mathcal{L}(Y)$, we consider the corresponding commutator $C(S,T):\mathcal{L}(X,Y)\to\mathcal{L}(X,Y)$ defined by

$$C(S,T)(A) := SA - AT$$
 for all $A \in \mathcal{L}(X,Y)$.

For a $n \in \mathbb{N}$, the set of all natural numbers, define $C(S,T)^n$ to be the n-th composition of the map C(S,T). That is,

$$C(S,T)^{n}(A) = C(S,T)^{n-1}(SA - AT)$$
$$= \sum_{k=0}^{n} \binom{n}{k} (-1)^{k} S^{n-k} A T^{k}.$$

Also we introduce the operators L_S , $R_T \in \mathcal{L}(\mathcal{L}(X,Y))$ by

$$L_S(A) := SA$$
 and $R_T(A) := AT$

for all $A \in \mathcal{L}(X,Y)$. An operator $A \in \mathcal{L}(X,Y)$ is said to intertwine S and T asymptotically if

$$||C(S,T)^n(A)||^{\frac{1}{n}} \to 0$$
 as $n \to \infty$.

This condition has been investigated by Colojoară and C. Foiaş [5]. It is clear that an operator $A \in \mathcal{L}(X,Y)$ intertwines S and T asymptotically if and only if its adjoint $A^* \in \mathcal{L}(Y^*,X^*)$ intertwines T^* and S^* asymptotically. Two operators $T \in \mathcal{L}(X)$ and $S \in \mathcal{L}(Y)$ are said to be asymptotically similar if there exists a bijection $A \in \mathcal{L}(X,Y)$ such that A intertwines S and T asymptotically and its inverse A^{-1} intertwines T and S asymptotically. In fact, asymptotic similarity generalizes slightly the notion of quasinilpotent equivalence, denoted by $T \sim^q S$, where X = Y and A = I is the identity operator on X in the definition of asymptotically similarity [5].

COROLLARY 3. Let $T \in \mathcal{L}(X)$ and $S \in \mathcal{L}(Y)$ be prehermitian operators. Assume that $A \in \mathcal{L}(X,Y)$ intertwines S and T asymptotically. Then SA = AT and $AH_0(T) \subseteq H_0(S)$.

PROOF. Since L_S and R_T are commuting prehermitian operators, the commutator $C(S,T) = L_S - R_T$ is also a prehermitian operator by Lemma 4.19 of [6]. By Proposition 1, we have

$$A \in H_0(C(S,T)) = \ker C(S,T).$$

Hence SA = AT. Let y = Ax and $x \in H_0(T)$. Then, by Proposition 1,

$$Sy = SAx$$
$$= ATx$$
$$= 0$$

and hence

$$y \in \ker S = H_0(S)$$
.

This completes the proof.

An operator $A \in \mathcal{L}(X,Y)$ is said to be *quasi-affinity* if A is injective and has dense range. If the operators $T \in \mathcal{L}(X)$ and $S \in \mathcal{L}(Y)$ are intertwined asymptotically by quasi-affinities $A \in \mathcal{L}(X,Y)$ and $B \in \mathcal{L}(Y,X)$, that is A and B are quasi-affinities for which

$$||C(S,T)^n(A)||^{\frac{1}{n}} \to 0$$
 and $||C(T,S)^n(B)||^{\frac{1}{n}} \to 0$ as $n \to \infty$,

then we say that T and S are asymptotically quasi-similar. Two operators $T \in \mathcal{L}(X)$ and $S \in \mathcal{L}(Y)$ are called quasi-similar if there exist quasi-affinities $A \in \mathcal{L}(X,Y)$ and $B \in \mathcal{L}(Y,X)$ so that AT = SA and TB = BS.

An operator $T \in \mathcal{L}(X)$ is said to be a *Fredholm operator* if ker T and X/TX are both of finite dimension. The essential spectrum $\sigma_e(T)$ of $T \in \mathcal{L}(X)$ is defined by

$$\sigma_e(T) := \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not a Fredholm operator} \}.$$

It is clear that

$$\sigma_e(T) \subseteq \sigma(T)$$

and will be empty when X is finite dimensional.

COROLLARY 4. Let $T \in \mathcal{L}(X)$ and $S \in \mathcal{L}(Y)$ be prehermitian operators and let T and S be asymptotically quasi-similar. Then T and S are quasi-similar. Moreover, $\sigma(T) = \sigma(S)$ and $\sigma_e(T) = \sigma_e(S)$.

PROOF. Assume that $T \in \mathcal{L}(X)$ and $S \in \mathcal{L}(Y)$ are intertwined asymptotically by quasi-affinities $A \in \mathcal{L}(X,Y)$ and $B \in \mathcal{L}(Y,X)$. Then, by Proposition 1, we have

$$A \in \ker C(S,T)$$
 and $B \in \ker C(T,S)$

and hence T and S are quasi-similar. The final assertion is a consequence of Theorem 3.5 of [7] and the main Theorem of [11].

COROLLARY 5. Let $T \in \mathcal{L}(X)$ and $S \in \mathcal{L}(Y)$ be prehermitian operators and let $T \in \mathcal{L}(X)$ and $S \in \mathcal{L}(Y)$ be asymptotically similar. Then T and S are similar. Moreover, there exists an invertible operator $A \in \mathcal{L}(X,Y)$ for which $AH_0(T) = H_0(S)$ and $\sigma_T(x) = \sigma_S(x)$ for all $x \in X$.

PROOF. If T and S are asymptotically similar then there exists an invertible operator $A \in \mathcal{L}(X,Y)$ such that A intertwines S and T asymptotically and its inverse A^{-1} intertwines T and S asymptotically. Then, by Proposition 1, we have

$$A \in \ker C(S, T)$$
 and $A^{-1} \in \ker C(T, S)$,

and hence T and S are similar. The final assertion is a consequence of Proposition 1.2.17 of [8].

COROLLARY 6. Let $T, S \in \mathcal{L}(X)$ be prehermitian operators. If T is quasinilpotent equivalent to S then S = T.

THEOREM 7. Let $T \in \mathcal{L}(X)$ be prehermitian operator and let $S \in \mathcal{L}(Y)$ be a normal-equivalent such that S = A + iB for some prehermitian operators $A, B \in \mathcal{L}(Y)$ with AB = BA. Assume that T and S are asymptotically similar. Then there exists an invertible operator $L \in \mathcal{L}(X,Y)$ such that

$$LH_0(T) \subseteq \ker A \cap \ker B \subseteq H_0(A) \cap H_0(B).$$

PROOF. It is clear that

$$\ker A \cap \ker B \subseteq H_0(A) \cap H_0(B)$$
.

Assume that T and S are asymptotically similar and choose a corresponding bijection $L \in \mathcal{L}(X,Y)$ for the asymptotic intertwining of (S,T) and (T,S). Then there is a continuous algebra homomorphism $\Phi: C^2(\mathbb{C}) \to \mathcal{L}(X)$ with $\Phi(1) = I$, $\Phi(\text{Re}(\cdot)) = A$ and $\Phi(\text{Im}(\cdot)) = B$. For a $x \in H_0(T)$, let y = Lx. Then by Corollary 3 we have

$$y \in LX_T(\{0\}) = Y_A(\{0\})$$

 $\subseteq Y_A(Re^{-1}(\{0\}))$
 $= Y_A(\{0\}).$

Hence

$$\lim_{n\to\infty} \|A^n y\|^{\frac{1}{n}} = 0.$$

Thus by Proposition 1, Ay = 0 and hence $y \in \ker A$. In the same way we obtain $y \in \ker B$ and hence

$$LH_0(T) \subseteq \ker A \cap \ker B$$
.

This completes the proof.

COROLLARY 8. Let $S \in \mathcal{L}(Y)$ be a normal-equivalent such that S = A + iB for some prehermitian operators $A, B \in \mathcal{L}(Y)$ with AB = BA. Assume that $T \in \mathcal{L}(X)$ is quasinilpotent equivalent to S. Then $H_0(T) = H_0(S)$ and $H_0(S) \subseteq \ker A \cap \ker B \subseteq H_0(A) \cap H_0(B)$.

PROOF. It is clear that if $\lim_{n\to\infty} ||T^n x||^{\frac{1}{n}} = 0$ then Ax = Bx = 0. \square

THEOREM 9. Let $S_k = A_k + iB_k$ be normal-equivalent operators for some prehermitian operators A_k , $B_k \in \mathcal{L}(Y)$ for k = 1, 2. And let $T_1 \in \mathcal{L}(X)$, $T_2 \in \mathcal{L}(Y)$, $T_1 \sim^q S_1$ and $T_2 \sim^q S_2$. Assume that $A \in \mathcal{L}(X,Y)$ intertwines T_1 and T_2 asymptotically. Then $A_2A = AA_1$, $B_2A = AB_1$ and $S_2A = AS_1$. Moreover, $AH_0(A_2) \subseteq H_0(A_1)$ and $AH_0(B_2) \subseteq H_0(B_1)$.

PROOF. Clearly for $k=1, 2, S_k$ is decomposable. Since $A \in \mathcal{L}(X,Y)$ intertwines T_1 and T_2 asymptotically, then by Theorem 2.4 in of [7] we have

$$AX_{T_1}(F) \subseteq Y_{T_2}(F)$$

for every closed $F\subseteq\mathbb{C}$. It follows from Proposition 3.4.12 of [8] and $T_k\sim^q S_k$ that

$$X_{T_1}(F) = X_{S_1}(F)$$
 and $Y_{T_2}(F) = Y_{S_2}(F)$

for all closed $F \subseteq \mathbb{C}$. Thus we conclude that

$$AX_{S_1}(F) = AX_{T_1}(F) \subseteq Y_{T_2}(F) = Y_{S_2}(F)$$

for all closed $F \subseteq \mathbb{C}$. As in the proof of Theorem 7, for k=1, 2, let Φ_k be the continuous algebra homomorphism from $C^2(\mathbb{C})$ to $\mathcal{L}(X)$ (respectively $\mathcal{L}(Y)$) with $\Phi_k(1) = I$ on X (respectively Y), $\Phi_k(\text{Re}(\cdot)) = A_k$ and $\Phi_k(\text{Im}(\cdot)) = B_k$. By Theorem 3.2.4 of [5], we have

$$AX_{A_1}(F) = AX_{\Phi_1(Re(\cdot))}(F)$$

$$= AX_{S_1}(Re^{-1}(F))$$

$$\subseteq Y_{S_2}(Re^{-1}(F))$$

$$= Y_{\Phi_2(Re(\cdot))}(F)$$

$$= Y_{A_2}(F)$$

for every closed $F\subseteq\mathbb{C}$. By Proposition 3.4.12 of [8], A intertwines A_1 and A_2 asymptotically. It follows from Proposition 1 that

$$C(A_2, A_1)A = 0$$
 and $AH_0(A_2) \subseteq H_0(A_1)$.

In the same way we have

$$C(B_2, B_1)A = 0$$
 and $AH_0(B_2) \subseteq H_0(B_1)$,

and hence

Ì

$$C(S_2, S_1)A = C(A_2, A_1)A + iC(B_2, B_1)A$$

= 0.

This completes the proof.

References

- [1] P. Aiena, T. L. Miller and M. M. Neumann, On a localized single-valued extension property, Preprint, Mississippi State University (2001).
- [2] E. Albrecht, Funktionalkalküle in mehreren Verränderlichen für stetige lineare Operatoren auf Banachräumen, Manuscripta Math. 14 (1974), 1–40.
- [3] C. Apostol, Spectral decompositions and functional calculus, Rev. Roum. Math. Pures et Appl. 13 (1968), 1481–1528.
- [4] K. Clancey, Seminormal operators, Lecture Notes in Math., vol. 742, Springer, New York, 1979.
- [5] I. Colojoară and C. Foiaș, *Theory of generalized spectral operators*, Gorden and Breach, New York, 1968.
- [6] H. R. Dowson, Spectral Theory of linear operators, Academic Press, New York, 1978.
- [7] K. B. Laursen and M. M. Neumann, Asymptotic intertwining and spectral inclusions on Banach spaces, Czech. Math. J. 43(118) (1993), 483–497.
- [8] ______, An Introduction to Local Spectral Theory, London Mathematical Society Monographs New Series 20, Oxford Science Publications, Oxford, 2000.
- [9] G. Lumer, Spectral operators, hermitians operators, and bounded groups, Acta Sci. Math. 25 (1964), 75–85.
- [10] M. Mbekhta, Sur la théorie spectrale locale et limite des nilpotents, Proc. Amer. Math. Soc. 112 (1991), 621-631.
- [11] T. L. Miller and V. G. Miller, Equality of essential spectra of quasisimilar operators with property (δ), Glasgow Math. J. 38 (1996), 21–28.
 - [12] P. Vrbová, On local spectral properties of operators in Banach spaces, Czech. Math. J. 23(98) (1973), 483–492.
 - [13] _____, Structure of maximal spectral spaces of generalized scalar operators, Czech. Math. J. 23 (1973), 493–496.
 - [14] J. K. Yoo, Admissible operators, Far East J. Math. Sci. 8 (2003), no. 2, 223-234.

Jong-Kwang Yoo Department of Liberal Arts and Science Chodang University Muan 534-701, Korea E-mail: jkyoo@chodang.ac.kr

Hyuk Han
Department of Mathematics
Seonam University
Namwon 590-711, Korea
E-mail: hyukhan@naver.com