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ON PREHERMITIAN OPERATORS
JONG-KWANG Y00 AND HYUK HAN

ABSTRACT. In this paper, we are concerned with the algebraic rep-
resentation of the quasi-nilpotent part for prehermitian operators
on Banach spaces. The quasi-nilpotent part of an operator plays a
significant role in the spectral theory and Fredholm theory of oper-
ators on Banach spaces. Properties of the quasi-nilpotent part are
investigated and an application is given to totally paranormal and
prehermitian operators.

1. Introduction

Throughout this note, let X be a Banach space over the complex
plane C and let £(X) denote the Banach algebra of all bounded linear
operators on X. For a given T € L(X), let o(T) and p(T) denote
the spectrum and the resolvent set of T, respectively. An operator T €
L(X) is said to be prehermitian if

sup || exp(itT)|| < oo,
teR

where R is the set of real numbers. An operator T € L£(X) is called
normal-equivalent if there are two commuting prehermitian operators
A, B € L(X) such that T = A+ 4B. In [9], Lumer showed that an
operator T € L£(X) is prehermitian if and only if there is an equivalent
algebra norm || - ||; on L£(X) such that T is a hermitian element of
L(X) endowed with this norm. Also, it is known that T € L£(X) is
normal-equivalent if and only if there is an equivalent algebra norm
Il on £(X) such that T is a normal element of £(X) endowed with
this norm.
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We denote by C*°(C) the Fréchet algebra of all infinitely differ-
entiable complex valued functions defined on the complex plane C
with the topology of uniform convergence of every derivative on each
compact subset of C. An operator T € L(X) is called a general-
ized scalar operator if there exists a continuous algebra homomorphism
® : C°(C) — L(X) satisfying ®(1) = I, the identity operator on X,
and ®(z) = T, where z denotes the identity function on C. Such a
continuous homomorphism @ is in fact an operator valued distribution
and it is called a spectral distribution for T. An operator T € L(X)
is said to be of class C?(C) if there exists a continuous algebra homo-
morphism @ : C%(C) — L(X) satisfying ®(1) = I and ®(z) =T. Such
® is then called a continuous functional calculus for T It is clear from
Lemma 3.5 of [2] that normal-equivalent operators are of class C?(C).
Conversely, if T € £(X) is of class C?(C) then T is normal-equivalent.
For, if ® : C?(C) — L(X) is a continuous functional calculus for T
then A := ®(Re(-)) and B := ®(Im(-)) are commuting operators of
class C?(C) and hence prehermitian.

An operator T € L(X) is called decomposable if for every open cov-
ering {U,V} of the complex plane C there exists a pair of T-invariant
closed linear subspaces Y and Z of X such that

Y+Z=X, oT|Y)CU and oT

7) CV,

where T'|Y denotes the restriction operator of T on Y. Although de-
composable operators generally have no functional calculus of Riesz,
these operators possess many of the spectral properties of normal op-
erators. It is known that if T is a prehermitian operator then T is a
generalized scalar operator and hence decomposable [8].

The local resolvent set pr(x) of T at the point x € X is defined
as the union of all open subsets U of C for which there is an analytic
function f : U — X which satisfies (T"— X\)f(A\) =z for all A € U.
The local spectrum

or(z):=C\ pr(z).

Clearly, the local resolvent set pr(z) is open, and the local spectrum
or(z) is closed. For each z € X, the function f(A): p(T) — X defined
by f(A) = (T—X)"'z is analytic on p(T) and satisfies (T —\)f(A) ==z
for all A € p(T). Hence the resolvent set p(T") is always subset of
pr(z) and hence or(z) is always subset of o(T). The analytic solutions
occurring in the definition of the local resolvent set may be thought of
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as local extensions of the function
(T—XN"tz:p(T) — X.

There is no uniqueness implied. Thus we need the following definition.

An operator T € L(X) is said to have the single-valued extension
property, abbreviated SVEP, if for every open set U C C, the only
analytic solution f : U — X of the equation (7'— X)f(A\) = 0 for all
A € U is the zero function on U. Hence if T has the SVEP, then for
each z € X there is the maximal analytic extension of (T'— A)~'z on
pr(z).

Given an operator T € £(X) and an element z € X,

rp(z) := limsup || T"z|| n
n—oo

is called the local spectral radius of T at x. It is clear that
max{|A| : A € or(z)} < rr(x)

for all x € X but for operators without the SVEP, this inequality may
well be strict. It is well known that if 7" has the SVEP and = € X is
a non-zero element, then the compact set or(z) is non empty and the
local spectral radius formula,

rr(z) = max{ |\ : A € op(z)}
holds and the spectral radius
r(T) = max{rp(z) : z € X}

by Proposition 1.2.16, Proposition 3.3.13 and Proposition 3.3.14 of [8].
Let F C C, the analytic spectral subspace X7p(F) of T € L(X) is
defined by
Xr(F)={ze€ X :0r(x) C F}.

It is easy to see that X (F') is a hyperinvariant linear subspace of X
but need not be closed. An operator T € £(X) is said to have Dunford’s
property (C) if Xp(F) is closed for every closed F© C C. This condition
plays an important role in the theory of spectral operators. It is well
known that Dunford’s property (C) implies the SVEP. Let ker 7' denote
the kernel of T. Then it is easy to see that

ker (T — X) € Xr({\})
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for all A € C.

Fora F' C C, consider the class of all linear subspaces Z of X which
satisfy (T'— A)Z = Z for all A ¢ F' and let E7(F) denote the span
of all such subspaces Z of X. Er(F) is called an algebraic spectral
subspace of T . It is clear that

(T —NEp(F)=Ep(F) forall A\¢F

as well so that it is the largest linear subspace with this property.
Given an operator T € £(X), the quasi-nilpotent part of T is the set

Ho(T):={z e X : lim |T"z|* = 0}.
n—oo

It is clear that Hy(T') is a linear subspace of X and in fact hyperin-
variant subspace of T'. In general, Hy(T) is not closed. It follows from
Theorem 1.5 of [12] that T is quasi-nilpotent if and only if Ho(T) = X.
Moreover, if T is invertible then Hy(T') = {0}. The systematic investi-
gation of the space Ho(T") was initiated by Mbekhta [10] after an earlier
work of Vrbovd [12]. As shown by Mbekhta, quasi-nilpotent part of an
operator play a significant role in the local spectral and Fredholm theory
of operators on Banach spaces.

2. Main results

PROPOSITION 1. Let T be a prehermitian operator on a Banach
1
space X and xzg € X. Then lim ||[T"xy||» =0 if and only if Txo = 0.
n—oo
And kerT is the quasi-nilpotent part of T. Moreover,

Ho(T) = X7({0}) = Er({0}) = kerT = {z € X : r¢(z) = 0}.

PROOF. It is easy to see that
kerT C Xr({0}).

Since prehermitian operators are of class C?(C), T is a generalized
scalar operator. From Theorem 2.7 of [14], we have

Xr({0) ={z € X: lim |T"z||* = 0}.



On prehermitian operators 57

Since X7({0}) is a closed hyperinvariant subspace of T,
o(T|X7({0})) = o(T) N {0}.

It follows that T'|X7({0}) is quasinilpotent and prehermitian. As there

is an equivalent algebra norm on L(Xp({0})) such that T|Xr({0})

is a hermitian element in L£(X7({0})) endowed with this norm. By
Theorem 10.17 of [3] we have

T1Xr({0}) = 0.

Hence
X7({0}) C kerT. »

Since T is a generalized scalar operator,
Ho(T)= {z € X : rr(z) = 0}
by Proposition 3.3.17 of [8]. This completes the proof. O

A bounded linear operator T on a Banach space X is said to be
totally paranormal if

T = Nzl* < T = X)?z] 1]
for all z € X. It is well known that if T is totally paranormal then
ker (T — )\) = ker (T — \)?

for all A € C and so T has the SVEP. Also it is clear that every
hyponormal operator on a Hilbert space H is totally paranormal.

THEOREM 2. Let T be a totally paranormal operator on a Banach
space X and xz9 € X. Then lim |[T"330||% =0 if and only if Txg = 0.
Moreover, S

Xr({A}) = ker (T' = X) = Ho(T - A)

for all A € C. In particular, kerT is the quasi-nilpotent part of T.
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PROOF. Let z € X be a unit vector. Since T is totally paranormal,
(T = Nz]|* < (T = 22|l |||
For any n =2,3,... , we obtain
(T = X"zl = (T — MN(T - )" z|?

< T = 22T ="tz (T - )" e
= (T = " 2| (T = )" a|.

It follows from Lemma 1.2 of [4] that
(T = Nz[™ < (T = Nz

for any unit vector x € X and n € N. Hence, if lim |(T — /\)nx||% =0
then (I'— A)xz = 0. Since T has the SVEP, we have

Xr({A}) = X7-1({0})
={reX: lim |(T-X\"z|~ =0}
n—oo
= Ho(T — \).
Therefore we have
HO(T — )\) = XT_A({O}) C ker (T — /\)
for all A € C. This completes the proof. O

Let X and Y be complex Banach spaces over the complex field C
and let £(X,Y) denote the space of all continuous linear operators from
X to Y. For given operator T € £L(X) and S € L£(Y), we consider the
corresponding commutator C(S,T): L(X,Y) — L(X,Y) defined by

C(S,T)(A) := SA— AT forall Aec L(X,Y).

For a n € N, the set of all natural numbers, define C(S,T)™ to be the
n-th composition of the map C(S,T). That is,

C(S, T)™(A) = C(S,T)" " *(SA — AT)

-3 (Z) (~1)kSnkAT*,

k=0
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Also we introduce the operators Lg, Ry € L{L(X,Y)) by
LS(A) :=SA and RT(A) = AT

for all A€ L(X,Y). An operator A € L(X,Y) is said to intertwine S
and T asymptotically if

IC(S, T)*(A)||» >0 as n— .

This condition has been investigated by Colojoara and C. Foiag [5]. It
is clear that an operator A € L£(X,Y) intertwines S and T asymp-
totically if and only if its adjoint A* € £L(Y™*,X*) intertwines T™ and
S* asymptotically. Two operators T € L(X) and S € L(Y) are said
to be asymptotically similar if there exists a bijection A € L(X,Y)
such that A intertwines S and T asymptotically and its inverse A~}
intertwines 7' and S asymptotically. In fact, asymptotic similarity
generalizes slightly the notion of quasinilpotent equivalence, denoted by
T ~985, where X =Y and A =1 is the identity operator on X in the
definition of asymptotically similarity [5].

COROLLARY 3. Let T € L(X) and S € L(Y) be prehermitian oper-
ators. Assume that A € L(X,Y) intertwines S and T asymptotically.
Then SA = AT and AHy(T) C Hy(S).

PROOF. Since Lg and Rg are commuting prehermitian operators,
the commutator C(S,T) = Ls — Ry is also a prehermitian operator by
Lemma 4.19 of [6]. By Proposition 1, we have

A € Ho(C(S,T)) =ker C(S,T).

Hence SA = AT. Let y = Az and z € Hy(T). Then, by Proposition
L,
Sy = SAx

= ATz

=0
and hence

y € ker S = Hy(S).

This completes the proof. 0
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An operator A € L(X,Y) is said to be quasi-affinity if A is injective
and has dense range. If the operators T € £(X) and S € L(Y) are
intertwined asymptotically by quasi-affinities A € £L(X,Y) and B €
L(Y,X), that is A and B are quasi-affinities for which

IC(S, Ty (A)* =0 and [[C(T,S)*(B)[* ~0 as n— oo,

then we say that T and S are asymptotically quasi-similar. Two op-
erators T € L(X) and S € L(Y) are called quasi-similar if there exist
quasi-affinities A € £(X,Y) and B € L(Y,X) so that AT = SA and
TB = BS.

An operator T € L£(X) is said to be a Fredholm operator if ker T
and X/TX are both of finite dimension. The essential spectrum o.(T)
of T € L(X) is defined by

0e(T) == {X € C: T — X is not a Fredholm operator}.

It is clear that
oe(T) C o(T)

and will be empty when X is finite dimensional.

COROLLARY 4. Let T € L(X) and S € L(Y) be prehermitian op-
erators and let T and S be asymptotically quasi-similar. Then T and
S are quasi-similar. Moreover, o(T) = o(S) and c.(T) = 0.(95).

PRroOOF. Assume that T € £(X) and S € L(Y) are intertwined
asymptotically by quasi-affinities A € L£(X,Y) and B € L(Y,X).
Then, by Proposition 1, we have

A€kerC(S,T) and B €kerC(T,S)

and hence T and S are quasi-similar. The final assertion is a conse-
quence of Theorem 3.5 of [7] and the main Theorem of [11]. a

COROLLARY 5. Let T € L(X) and S € L(Y) be prehermitian op-
erators and let T € L(X) and S € L(Y) be asymptotically similar.
Then T and S are similar. Moreover, there exists an invertible opera-
tor A e L(X,Y) for which AHy(T) = Ho(S) and or(z) = og(z) for
all z € X.
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Proor. If T and S are asymptotically similar then there exists
an invertible operator A € £(X,Y) such that A intertwines S and T
asymptotically and its inverse A~! intertwines T and S asymptoti-
cally. Then, by Proposition 1, we have

AckerC(S,T) and A™'ekerC(T,S),

and hence T and S are similar. The final assertion is a consequence of
Proposition 1.2.17 of [8]. O

COROLLARY 6. Let T, S € L(X) be prehermitian operators. If T
is quasinilpotent equivalent to S then S =T.

THEOREM 7. Let T € L(X) be prehermitian operator and let S €
L(Y) be a normal-equivalent such that S = A+ 1B for some prehermi-
tian operators A, B € L(Y) with AB = BA. Assume that T and
S are asymptotically similar. Then there exists an invertible operator
L € L(X,Y) such that

LHy(T) C ker AN kerB C Hy(A) N Ho(B).

Proor. It is clear that
ker AN ker B C Hy(A) N Hy(B).

Assume that T and S are asymptotically similar and choose a cor-
responding bijection L € L£(X,Y) for the asymptotic intertwining of
(S,T) and (T,S). Then there is a continuous algebra homomorphism
® : C%(C) — L(X) with ®(1) = I, ®(Re()) = A and ®(Im(-)) = B.
For a o € Hy(T), let y = Lz. Then by Corollary 3 we have
y € LX7({0}) = Y4({0})
C Ya(Re™({0}))
= Ya({0}).
Hence .
lim ||A™y||» =0.
Thus by Proposition 1, Ay = 0 and hence y € ker A. In the same way
we obtain y € ker B and hence
LHy(T) C ker A N ker B.

This completes the proof. O
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COROLLARY 8. Let S € L(Y) be a normal-equivalent such that
S = A+ 1iB for some prehermitian operators A, B € L(Y) with AB =
BA. Assume that T € L£(X) is quasinilpotent equivalent to S. Then
H()(T) = Ho(S) and Ho(S) Q kerANkerB g H()(/l) N Ho(B)

PROOF. It is clear that if lim ||T"z|* =0 then Az = Bz =0. O

THEOREM 9. Let Sy = Ay + iBy be normal-equivalent operators
for some prehermitian operators Ay, By € L(Y) for k = 1,2. And
let Ty € L(X), To € L(Y), Th ~* S, and Ty ~? S;. Assume that
A € L(X,Y ) intertwines Ty and T, asymptotically. Then AyA = AA;,
By A = AB; and S;A = AS;. Moreover, AHo(Az) C Hy(A;) and
AHy(B) € Ho(B,).

PrROOF. Clearly for k& = 1,2, Si is decomposable. Since A €
L(X,Y) intertwines T; and T, asymptotically, then by Theorem 2.4
in of [7] we have

AXT1 (F) - YT2 (F)

for every closed F' C C. It follows from Proposition 3.4.12 of [8] and
T ~9 S that
X, (F)=Xg,(F) and Y, (F)=Ys,(F)
for all closed FF C C. Thus we conclude that
AXg, (F) = AXq,(F) C Y1, (F) =Yg, (F)
for all closed FF C C. Asin the proof of Theorem 7, for k =1, 2, let &,

be the continuous algebra homomorphism from C?(C) to £(X) (respec-
tively £(Y')) with ®x(1) =1 on X (respectively V), ®x(Re(:)) = Ag
and ®;(Im(-)) = Bg. By Theorem 3.2.4 of [5], we have
AX 4, (F) = AXg, (Re(-))(F)

= AXg, (Re™1(F))

C Ys,(Re™'(F))

= Yo, (re() (F)

=Ya, (F)

for every closed FF C C. By Proposition 3.4.12 of [8], A intertwines
A; and A, asymptotically. It follows from Proposition 1 that

C(AQ,Al)A =0 and AHO(AQ) C Ho(Al).
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In the same way we have

C(Bz,Bl)AZO and AHO(B2) C Ho(Bl),

and hence
C(Sz, Sl)A = C(AQ, Al)A + ’iC(Bz, Bl)A
= 0.
This completes the proof. a
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