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Reed Solomon coding theory is very fa-
mous well known nonbinary error correction
method for Digital Electronic Devices (Con-
sumer and Communication products.)®

In 3™ author's paper, new RS(Reed Solo-
mon) Decoder, which is correcting 2 and 3
symbol errors,and encoder design method is
proposed using Normalized error position
stored ROM . Here New Arithmatic oper-
ation described in thgis paper can be used .
On the other hand Erasure correcting de-
coding algorithm, which can be used for de-
sign of RS Encoder , also use this operation.
The New Arithmatic operator is much sim-
pler and faster than before, So More effi-
cient RS CODEC SOC(System On Chip) de-
sign is Possible™*,

In chapter 2, we briefly described the
Structure of New Galois Field Arithmatic
operator . For example we describe how to
Convert GF(2%) elements to GF(2®) elements
., GF(2Y arithamtic operation Execution unit
position in the structure and then how to
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go back to GF(2®) from GF(2Y). In chapter
3,we apply the New algorithm to the calcu-
lation of Inversion and Multiplying which is
definitely much more simpler than direct
GF(2% operation circuit. Examples are giv-
en to prove the new circuit and we find
that the algorithms are workinmg well. In
Chapter 4 composite Arithmatic operator
design methods are given especially for A’
circuit and A/B (Dividing)circuit. This kind
of Composite Arithmatic operation circuit
can be efficient Chien
Searching circuit which is finding error lo-
cation in Reed Solomon Codec'

In chapter 5, Conclusions are made com-

used fast and

menting that in Composite Galois arith-
metic operation contains A’® and AP A%
can be calculated by calculating a*°A when
A's exponent is odd number and otherwise
we just calculate directly A’® . New Chien
searching machine design which can be
used for 4 symbol error correcting RS de-
coder is really the circuit which needs the
efficient arithmetic operator described in
this paper ©.
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2. New GF(28) Arithmatic Operation Cal-
culator Structure

In this section . we describe how to sim-
plify the Inversion circuit using Galois sub-
field". The circuit is used for divider HW
in RS Codec. Using this and multiplier de-
scribed in the former Author's paper?,
Most RS Codec circuit can be simplified and
faster. In Fig. 1 we draw the New Arithm-
atic Operation circuit block diagram V.
Here all arithmetic operations are done in
GF(2Y field so Dramatically reducing gate
counts and computational speed becomes
much fasrer than the case in GF(2%)
Multipler design using GF(2%) Sub field is
described in the Next Section .

GF(2% to GF(2%) is processed as follows.

Let o is in GF(2°) field as (bo, b', ...,
b7). it can be expressed as a"*=a + bg
where a and b is in GF(2* field and 8 is in
GF(2% . Here a and b are (z0.z1,22,z3) and
(z4,25,26,27) respectively. All by, z; (=0 to 7)
are in GF(2) = (0,1) . This means ak=
S @+ Baws) v YEGR?) and 7' = ¥°+1
(GF(2%) Primitive Polynomial)).

Then

7Z0= b0+bl+Db5

7Z1= bl+b3+b5

F(2) o GF(2)
Converter. ABeGF(2*

Arithmatic Operation In GF(Z*
Field .
A1LA2BLBLCLC2 & GR(2Y

T3

GFZ') to GF(Q)
onverter, Ce GF(2®

C

Figl. New Galois Field Element in GF(2®)
matic Caculator Structure

Arith-

Z2= b2+b3+h6

Z3= bl+b3+bd+hb6

Z4= bl+b2+b3+b5+b6+b7

Z5= b2+b5+hb6

Z6= bl+b2+b3+b4d+b5+bb

Z7= bl+b3+bd+bb (1)

In the same way, From (1), we find
GF(2Y to GF(2% converter equation is , for

example
BO =71 + Z0 + Z2 + Z6 +7Z7
Bl = Z2 + Z1 +7Z5
B2 = Z3 + Z5 +77
B3 =71 + 76 +7Z7
B4 =71 + Z7
BS = Z5 + 76 +7Z7
B6 = Z3 + Z6 +7Z5
BT =71 + 76 +74 +77 (2)

now If we want calculate C=A-B (A,B.C,
B, YEGF(2%)), A=A1+BA2 and B=Bl+ BB,
C=Cl+ BC2 (A1,A2,B1,B2,C1,C2€GF(2%),
then.

C=(A1+BA2)( B1+ BB2)
=AIBl1+Al1B2+y A2B2+B (A2B2+A1B2)

So Cl= AlB1+A1B2+YA2B2
C2= A2B2+Al1B2 (3)

This is the Arithmatic operator in GF(2%)
for GF(2® ) Multiplier (1).

Example 1

Using equation (1) |If A=d® , Find

Al and A2.

Sol © Al=( Zo, Z1, Zo, Z3), A2=( Zs Zs.
Z6.77) so from equation (1), Al= a'?, A2= d®
EGF(2Y.

Example 2
If Al= a'?, A2= a® using equation (2)
Find A.
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Sol : From Equation (2)

B0 =271 + 720 + Z2 + 76 +Z7=0
Bl =72 + Z1 +Z5 =0

B2 =73 + 7Z5 +7Z7=0

B3=Z1 + Z6 +Z7=0

B4 =71 + Z7=0

B5 =75 + 76 +7Z7=1

B6 Z3 + 76 +7Z5=0

B7 = Z1 + Z6 +Z4 +77=0

So A= &° This is correct.

Il

3. Multiplying and Inverse Operation Cal-
culator Design using New Algorithm

{Inverse Calculator Design)

Now A, A in GF(2®) can be expressed as
follows.

A = Xo+Xi8

Al =Yo+Yi8 (3)

So From A A'=1

XoYo+ 7XiY1 =1

X1 Yo+ Xo +X1) Y1 =0 (4)

Here Xo, X1, Yo. Y1 €CGF(2"), fand 7€
GF(2®%) also B*=B+~, then Yo. Y1 are repre-
sented as in (5)":

Yo=(Xo+X1)/6
Y1=Xi/ 6
§ =Xo(Xo+X1) +v(XH) (5)

Also if X=(xo0. x1, X2, X3). 7X>=(x2+x3, X0
+x9 +x3, X3, x1+x2). So equation (5) is
Desired Arithmatic Operation In GF(2*) in
Fig.1. Here C=AA" =C1+8C2=1.

Examplel
Let's Find Inverse of a’, a® €GF(2®) us-
ing Subfield GF(24) Arithmatic operation.

{Solution)

A=a’ €GF(2Y = Xo +Xi 8.

From Eq. X0 = o' X; = of egr@Y).
From Eq. YO= a'¥/ (a® + o' ') =af

Here 7X,? = o,

Also Y1=1/ (af+aT7) = a M*=a,

Now Convert these to element in GF(2%).

Then b0=bl=b4=b7=0 and b2=b3=b5=b6
=0.

Hence this bi (i=0 to 7) represents «

so Correct.

(Multiplier Design)

Now A=Al1+B8A2 B=B1+3B2 and C=Cl+
BC2=AB

250

:a_5

So

C1=A1B1+7A2B2 and

C2=A2B2+B1A2+A1B2 (6)

Equation (6) is the desired Desired Ari-
thmatic Operation In GF(2") in Fig.1%%.

Example2

If A=a® and B=o® €GF(2% Find C=AB

Sol : A= Al+BA2

B=B1+/B2 here from (1) Al=c® A2=a’,

Bl=a®

B2=a’ €QF(2%).

Hence from (6)

Cl=a'?, C2=a® €GF(2Y, and from (2)

C=a’® eGF(2% and This is Correct.

Exampled

Show that if A=(a0.al.a2.a3) €GF(2%

then YA =(a3,a0,al,a2+a3) €EGF(2Y

A=aO+’ya1+7232+7333 so YA=
v=(a3,a0,al,a2+a3)

Proof
(a0+~val +’7232 ‘|'73a3)
because v =~>+1567

4. Composite Arithmatic Operation Cal-
culator Design

Divider and A3 calculation can be decom-
posed into 2 or more parts.. For example
A/B is composed of A multiply by B 1 and
A3 is A Multiply by A and then we multi-
ply A again to A2 result. In this case
Dividing and A3 calculation can be done as
in the circuit in Fig 2 (a) and Fig2(b).

Example is as below [(8].
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GF(Z") to GF@)
Converter, A, BeGF(2

Al A2

Arithmatic  laversion
Operation In GF(2%)
Field .

T T

Maltiply  in GFR*)

o] €2

GF(2Y) to GF@")
Converter. Ce GF(2%)

C=A/BinGF2Y

(a)

A

GF(2) to GF(2)
Converter. ABeGF(2Y

Al A2 A A2

Aritbmatic| Multiplying
Opetation tn GF(2') Fietd .

1 11\’ 1n GFQY)

Muliiply s GF{2*) Again

cl C2

GF(2Y to GF2Y
Converter. CeGF(2%

|

C=A inGF2Y

(b)

Fig 2 (a). Composite Arithmatic Operator Divider In GF(2%) (b). Composite Arithmatic Operator A3 In GF(2®)

Example
Let's Find A/B ., when A=a? | B=a® €
GF(2% using Subfield GF(2* Arithmatic

Composite operation.

{Solution>

From examplel of previous section,

a’=a’+pBa and from example2 of pre-
vious section a’=a? + '8 so as in Fig2(a)
and using equation (6), we find C=C1+8C2
=a'+yab+(a' +a® +a®)p .

Now we find (Zi ,i=0~3 : 0001) and (Zi
i=4~7 : 0010) . So from equation (2), we
find C=A/B €GF(2% = (10110101) = o’

3

=o' and This really Correct

5. Coclusion

In this paper various Arithmatic oper-
ation calculator design methods are pro-
posed and gave examples to show working
well. The methods are very fast and cost
effective because GF(2") arithmetic oper-
ations are much more simpler and faster
than that those in GF(2®). We can also cal-
culate root (A"®) and Plus (+) or Minus(-)
operation but it is as EXOR operation. So

All

the Arithmatic oiperations in Galois

Field are suggested here and proved.

(1)

(2]

(3

(6]

References

US patent number 5227992, “ Operatio-
nal Method and Apparatus over GF(2™)
using a Subfield GF(2m/2)". Man
young Lee, Hyeong Keon An et al.,
1993 Jul. 13

Hyeong Keon An, "2 Error Correcting
RS Decoder design’, IDEC Conference
Paper, 2004

Hyeong Keon An, TS Joo et al, * The
New RS Ecc Codec For Digital Audio
and Video', IEEE CES Conference pa-
per , PP112 115, 1992

Lee Man Young, = BCH coding and
Reed Solomon Coding theory,” 1990,
Minumsa(Daewoo Academic Press).
Sunghoon Kwon and Hyunchul Shin, *
Anarea efficient VLSI architecture of
Reed Solomon  decoder/encoder for
digital VCRs, " IEEE Transactions on
Consumer Electronics, Vol. 43, No.4,
Nov. 1997

Kwang Y.Liu, * Architecture for VLSI



116 259 Anl g Frojs HYALTY dAataA dA] g3

design of Reed Solomon Decoders,
‘IEEE Transactions on Computers.
Vol.33. No.2, Feb. 1984

(7) Hsu, 1.K. , [.S.Reed, "The VLSI Imple-
mentation of a Reed Solomon Encoder
Using Berlekamp's Bit Serial Multiplier
Algorithm”, IEEE Trans. On Computer,
Vol.C 33, No.10, pp.906 911(1984).

(8) & 2 " A" ede/mite, FA4 Az
71712 93 Reed Solomon EH37] AAe
s’ HdAabgetsA], TC 42, pp 13-18,
114 20054

(F & RN

e} 3 2 (Hyeong-Keon An)

He received B.Engineering
Degree in electrical engine-
ering from Seoul National
University, Seoul , KOREA
. in 1979 and M.S degree
in electrical science from
Korea Advanced Institute
of Science and Technology ., Seoul ,Korea in
1981, and the Ph.D. degree in electrical
engineering from State University of New
York at Stony Brook . NY, USA., in 1988.
In 1988, he joined Samsung Electronics Co.
Ltd as a Senior Researcher working for
designing System LSI for 10 years. From
1998 to 1999 , He worked for Telson Ele-
ctronics Corp. working for CDMA hand-
phone design. In 2000, he joined Tong Myoung
University in Busan as a Professor in Dept.
Of Information and Telecommunication
engineering . He has interests in designing
CDMA and GSM hand phone and also in
System LSI (Non Memory ) design. He also
operates Venture Comapany for Producing
various Mobile phones and GPS/MP3
Engines.




