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An Interacting Wave Profile of Three Trains of Gravity Waves on
Finite Depth by Contraction Method

TAEK-S00 JANG*
*Department of Naval Architecture and Ocean Engineering, Pusan National University, Busan609-735, South Korea

KEY WORDS: Fixed Point Approach, Three Interacting Stokes’ Waves

ABSTRACT: Superposition of three wave trains on finite depth is investigated. This paper is focused on how to improve the linear
superposition of three waves. This was realized by introducing the scheme. The idea of the scheme is based on a fixed point approach.
Application of the scheme to the superposition makes it possible to obtain a wave profile of wave-wave interaction. With the help of FFI, it
was possible to analyze high-order nonlinear frequencies for three interacting Stokes’ waves on finite depth.

1. Introduction

The wave interaction theory has been studied by other
researchers. Longuett-Higgins (1963) began research on
deepwater problems. Dalzell (1999) employed the symbolic
computation to neaten the complicated looking second-order
wave-wave interaction coefficients. Oscillatory third-order
perturbation solutions of sums of interacting Stokes wave on
deep water was shown by Pierson (1993). The treatment of
this nonlinear wave-wave interaction problem is based on
the perturbation theory. Because the perturbation theory has
a solid mathematical foundation, it can be a powerful tool
for solving problems. However, the derivation of solutions
becomes very lengthy.

A many of the applications of nonlinear mechanics in the
field of engineering and science may be based directly on
fixed-point methods (Zeidler, 1986; Deimling, 1985). One
example of the application of the fixed point theorem to the
wave problem is given in Bona and Bose (Bona et al,, 1974).
They examined the question of the existence of solitary
wave solutions to simple one-dimensional models for long
waves in nonlinear dispersive systems. Recently, Jang and
Kwon (2005) have proposed about a scheme, which utilizes
fixed-point theory to calculate the nonlinear wave profiles
(Jang and Kwon, 2005; Jang, 2005b; Jang, 2005c). In this
paper, based on the scheme, wave profiles for more than
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wave-wave progressive waves on finite depth is investigated.
Only a few studies have been done on nonlinear interacting
Pierson (1993) has studied about
perturbation solutions for sums of interacting Stokes’ waves

two Stokes’ waves,

in deep water. However, the derivation of high-order
solutions gets too lengthy to proceed, even when three
Stokes’ waves are considered to be summed.

In this paper, a numerical study on the interacting wave
profiles is illustrated. In addition, using FFT, it was possible
analyze high-order the
interaction. A fixed point approach was introduced in

to nonlinear  frequencies for
section 2. The Bernoulli's operator for wave interaction as
well as the contraction coefficient was investigated in section
3. Numerical calculations for a various cases of wave slopes

were carried out in Section 4. FFT analysis was also given.

2. Fixed Point Approach to Wave Profile

The fluid is assumed to be homogeneous, incompressible
and inviscid. In addition, the fluid motion is irrotational,
such that a velocity potential function exists. Suppose that
we consider a free surface flow. A Cartesian coordinate
system (yy,2) is adopted, with ;—( the plane of the
undisturbed free surface and the z-axis positive upwards.
The vertical elevation of any point on the free surface may
be defined by a function z—n(y,y,7). The surface tension
being negligible, then, Bernoulli’s equation applied on the
free surface is
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where ¢ p and p stand for the velocity potential, the
pressure of the atmosphere, and the constant fluid
density,

LD =P /o we have the expression for the free surface:

respectively.  Taking Bernoulli's  constant
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The right-hand side of (2) may be viewed as an operator
for the free surface p, in such a way that we can define an
operator B, which is the Bernoulli's operator (Jang T.S.,
Kwon, SH. and Kinoshita, T., 2005):
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Then Bernoulli’s operator B can be easily conformed to be
nonlinear, and (2) can be simply written as

n=B(n) @
If the operator B satisfies the following inequality
| B(m) — B(m) | o

<Blm—nle.pf<l ©)

then B is considereda contraction and the fixed point is
realized as the limit of the following sequence

N,y =Bm,) ©®)

with the initial condition for zero function o =0(Roman,
P., 1975; Jang and Kwon, 2005):

3. Superposition
We begin with three linear progressive wave potentials
on finite depth with different wave numbers ; 5( for

i=1,2,3 and consider their linear sum D o

a,g coshk](z+h) o+ zg coshk ,(z+ k)

® oum = o, coshk \k ©,  coshksh sin®;
aig coshk3(2+ B
R 3 coshk 3k sin©y )

where g, and @f;=1,2,3) represent the gravity
acceleration, the wave amplitude and frequency, respectively.
The product p,, the wave slope, is assumed small for
i=1,2,3. The symbol g (7=1,2,3) denotes the phase
functions that is,

i=1,2,3. The linear dispersion relation on finite depth is

of progressive waves, kx—oy for

assumed:

: _
ktanhk;h = % for 7=1,2,3 ®

If the linear sum (7) is substituted into (6), we obtain the

following iteration for free surface
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z=M,

Nopp1=— Vcl)sum.vq)sum

If wave condition is satisfied with the norm inequality
(5), then the iteration scheme (9) works and yields wave
profiles of an interacting Stokes’ waves on finite depth
(Jang, T.S.,, Kwon, S.H. and Kinoshita, T., 2005).

4. Numerical Results

In this section, we will present the numerical results of
wave profiles of three interacting Stokes’. waves. For
solutions of the wave profile, (9) is iterated with an initial
condition for zero function of mean water level (for n = 0),

that is, n,=(. For numerical study, we examine four

different wave profiles. Their wave information is tabulated
in Table 1.

Table 1 Various Wave-Parameters investigated

Case No K aQ; ko s ky az h

Casel 03 005 035 005 04 005 5

Case 2 03 01 035 01 04 01 5
Case 3 03 02 035 02 04 0.2 5

Case 4 03 03 035 03 04 03 5

Case 1 represents a mild slope and case 4 the other

extreme.
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Fig. 1 Convergence behavior of 7,

In Fig. 1 the process by which the wave profiles change
is shown. The change is shown in terms of the number of
iterations.

In Fig. 2, the obtained converged solutions are compared
with the corresponding linear wave profiles. The figure shows
an excellent agreement between the results obtained by the
proposed scheme and the linear ones for small wave slope.
However, some nonlinear features of wave profile or wave
inferaction can be observed for a relatively large wave slope.

oo Lineae wave
w+v{ =~ Proposed Scheme

(d) Case 4
Fig. 2 Comparison of wave profiles

To examine the nonlinear behavior of the solution, the
Fourier transform was introduced. The amplitude spectra of
the solutions are presented in Fig. 3. To highlight the peaks
in the amplitude spectrum, linear-log coordinates are also

illustrated. For the four cases, three dominant peaks at k,,

k, and ks appear clear as is expected. They are the
fundamental wave number components in this study.

In the figure, we can see the peaks of the proposed
scheme due to the double wave number components at 2k,
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(k=0.6), 2ky(k=0.7) and 2k3(k=08), the sum wave
numbers at k; +ky(k=0.65), k +ky(k=0.7) and k,-+k;
(k=0.8) even though their magnitudes are small compared
to those of the fundamental wave number components.
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Fig. 3 Comparison of wave amplitude spectra

However, in Fig. 3(a), it may be hard to observe the
peaks due to the difference wave numbers at k,—k;
(k=005), ky—k(k=0.1) and ky—k,(k=05) in the
amplitude spectrum: the hidden peaks are recovered when
the wave slopes are relatively larger cases as shown in Fig.
3 (b), (c) and (d). The interacting components are illustrated
in Table 2. The numbers corresponding to the frequency
components as shown in Table 2 are written in Fig. 4(d).

An interesting phenomenon was observed: the proposed
scheme yields peaks at higher frequencies, as shown in
red-colored arrows in Fig. 3(d). Their existence cannot be
explained by the Pierson’s (1999) perturbation solution of
second order. They may be corresponding to higher order
nonlinear frequencies for three interacting Stokes’ waves,
which should be investigated further.

Table 2 Peak frequencies in amplitude spectra

Indicated No Féeil;i:lgts lli Zgllle:nccayl Value of
1 ky 03
2 ky 0.35
3 ks 04
4 2k, 06
5 2k, 07
6 2k, 08
7 ky +ky 0.65
8 ky+ ks 07
9 ky+ ks 08
10 ky— K 0.05
11 ky—k 01
12 ks —k, 0.05

5. Conclusions

By applying Banach fixed-point theorem to Bernoulli's
Equation, we have proposed a nonlinear iterative scheme to
realize an interacting wave profile for three Stokes’ waves
on finite depth. The formulation and process of the
computation involved are very handy even though three
Stokes’ wave interactions are taken into account. This is a
completely different point of view when compared to the
perturbation approach of Pierson (1993). It is interesting that
the iteration, based on linear progressive potential solutions,
enabled us to observe the higher-order nonlinear frequencies
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for three interacting Stokes’ waves that Pierson’s second
order solution could not predict.
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