Thermally Stable and Processible Norbornene Copolymers

  • Yoo Dong-Woo (School of Chemistry, Seoul National University) ;
  • Yang Seung-Jae (School of Chemistry, Seoul National University) ;
  • Lee Jin-Kyu (School of Chemistry, Seoul National University) ;
  • Park Joohyeon (School of Chemical and Biological Engineering, Seoul National University) ;
  • Char Kookheon (School of Chemical and Biological Engineering, Seoul National University)
  • Published : 2006.02.01

Abstract

Processible norbornene copolymers were realized by judiciously designing norbomene comonomers, which were themselves prepared by the Diels-Alder reaction of cyclopentadiene and benzoquinone followed by the isomerization and alkylation of alcohols. The norbornene copolymers containing these derivatized comonomers, prepared by [Pd($x_{2}CH-{3} $)$_{4}$][$SbF_{6}$]$_{2}$ catalyst, exhibited excellent solubility in many organic solvents as well as good thermal stability, as evidenced by their high glass transition ($T_{g}$) and decomposition ($\∼$350$^{circ}C$) temperatures. In addition, fairly strong adhesion to substrates such as glasses and silicon wafers was also achieved with these copolymers to overcome the limitations experienced by polynorbornene homopolymers and to make them attractive for many important industrial applications.

Keywords

References

  1. E. Cassidy, Thermally Stable Polymer: Synthesis and Properties, Marcel Dekker, New York, 1980
  2. L. Wollbracht, Comprehensive Polymer Science, G. Allen and J. Bevington, Eds., Pergamon, Wheaton & Co., 1989, Exeter, vol. 5, p. 375
  3. R. B. Rigby, Engineering Thermoplastics, J. M. Margolis, Ed., Marcel Dekker, New York, 1995
  4. E. M. Maya, A. E. Lozano, J. G. Campa, and J. Abajo, Macromol. Rapid Commun., 25, 592 (2004) https://doi.org/10.1002/marc.200300092
  5. N. R. Grove, P. A. Kohl, S. A. B. Allen, S. Jayaraman, and R. Shick, J. Polym. Sci.; Part B: Polym. Phys., 37, 3003 (1999) https://doi.org/10.1002/(SICI)1099-0488(19991101)37:21<3003::AID-POLB10>3.0.CO;2-T
  6. C. Janiak and P. G. Lassahn, Macromol. Rapid Commun., 22, 479 (2001) https://doi.org/10.1002/1521-3927(20010401)22:7<479::AID-MARC479>3.0.CO;2-C
  7. R. Nomura, S. M. Abdul Karim, H. Kajii, R. Hidayat, K. Yoshino, and T. Masuda, Macromolecules, 33, 4313 (2000) https://doi.org/10.1021/ma0003708
  8. T. Sagane and A. Mizuno, Makromol. Chem., 194, 37 (1993) https://doi.org/10.1002/macp.1993.021940103
  9. C. Pugh and R. R. Schrock, Macromolecules, 25, 6593 (1992) https://doi.org/10.1021/ma00050a032
  10. L. H. Sperling, Introduction to Physical Polymer Science, Wiley-Interscience, New York, 1985, Chapt. 6
  11. C. Mehler and W. Risse, Makromol. Chem. Rapid Commun., 12, 255 (1991) https://doi.org/10.1002/marc.1991.030120503
  12. C. Mehler and W. Risse, Macromolecules, 25, 4226 (1992) https://doi.org/10.1021/ma00042a030
  13. G. Odian, Principles of Polymerization, 3rd ed., Wiley-Interscience, New York, 1993
  14. J. Park, K. Char, and C. W. Park, Ind. Eng. Chem. Res., 38, 4675 (1999) https://doi.org/10.1021/ie9903083
  15. J. P. Mathew, A. Reinmuth, J. Melia, N. Swords, and W. Risse, Macromolecules, 29, 2755 (1996) https://doi.org/10.1021/ma9515285
  16. A. D. Hennis, J. D. Polley, G. S. Long, A. Sen, D. Yandulov, J. Lipian, G. M. Benedikt, and L. F. Rhodes,Organometallics, 20, 2802 (2001) https://doi.org/10.1021/om010232m
  17. B. L. Goodall, W. Risse, and J. P. Mathew, U.S. Patent 5705503 (1998)
  18. A. J. Pasquale, A. R. Fornof, and T. E. Long, Macromol. Chem. Phys., 205, 621 (2004) https://doi.org/10.1002/macp.200300080
  19. B. L. Goodall, G. M. Benedikt, L. H. Mcintosh III, D. A. Barnes, U. S. Patent 5468819 (1995)