DOI QR코드

DOI QR Code

Tunable Polymeric Bragg Grating filter Using Nanoimprint Technique

나노 임프린트 기술을 이용한 폴리머 도파로 기반의 브래그 격자형 파장 가변 필터

  • Kim, Do-Hwan (Department of Electronic Engineering, Kwangwoon University) ;
  • Chin, Won-Jun (Department of Electronic Engineering, Kwangwoon University) ;
  • Lee, Sang-Shin (Department of Electronic Engineering, Kwangwoon University) ;
  • Ahn, Seh-Won (Devices and Materials Lab., LG Electronics Institute of Technology) ;
  • Lee, Ki-Dong (Devices and Materials Lab., LG Electronics Institute of Technology)
  • 김도환 (광운대학교 전자공학과) ;
  • 진원준 (광운대학교 전자공학과) ;
  • 이상신 (광운대학교 전자공학과) ;
  • 안세원 (LG 전자기술원 소자재료연구소) ;
  • 이기동 (LG 전자기술원 소자재료연구소)
  • Published : 2006.02.01

Abstract

A tunable wavelength filter was proposed and demonstrated by using the UV nanoimprint technique. It consists of a Bragg grating in polymer waveguides and a heating electrode. The manufacturing of the grating was substantially simplified with the introduction of a smart imprint stamp containing a waveguide pattern integrated with the grating pattern. The center wavelength of the filter was successfully tuned by taking advantage of the thermooptic effect in polymers, which was induced by supplying electrical power to the electrode. For the fabricated device, a transmission dip of ${\~}$15 dB and a 3-dB bandwidth of 0.8 nm were obtained at the Bragg wavelength of ${\~}$l560 nm. The achieved thermooptic tuning efficiency was ${\~}$0.28 nm/mW, while the center wavelength was shifted from 1560 nm to 1558 nm with the electrical power consumption of 7 mW.

본 논문에서는 UV 나노임프린트 기술을 이용하여 파장가변 필터를 제안하고 구현하였다. 제안된 소자는 폴리머 도파로 기반의 브래그 격자와 열 광학효과를 위한 히팅용 전극으로 구성되어 있다. 도파로 패턴과 브래그 격자 패턴이 결합된 임프린트용 스탬프를 이용하여 브래그 격자를 구현하였다. 전극에 전력을 인가하여 폴리머의 열 광학효과를 통하여 필터의 중심파장을 효과적으로 이동시킬 수 있었다. 제작된 소자는 브래그 파장대역인 1560 nm 에서 대역저지 소멸비가 15 dB이며, 대역폭이 0.8 nm였다. 또한 소비전력이 7 mW일 때 중심파장은 1560 nm에서 1558 nm로 이동되었다. 이 때 열 광학효과 파장가변 특성이 약 0.28 nm/mW 였다.

Keywords

References

  1. M. C. Oh, H. J. Lee, M. H. Lee, J. H. Ahn, S. G. Han, and H. G. Kim, 'Tunable wavelength filters with Bragg gratings in polymer waveguides,' Appl. Phys. Lett., vol. 73, pp. 2543-2545, 1998 https://doi.org/10.1063/1.122527
  2. L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R. A. Norwood, 'Thermooptic planar polymer Bragg grating OADM's with broad tuning range,' IEEE Photon. Technol. Lett., vol. 11, pp. 448-450, 1999 https://doi.org/10.1109/68.752544
  3. J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, 'Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,' Appl. Phys. Lett., vol. 82, pp. 3823-3825, 2003 https://doi.org/10.1063/1.1579847
  4. W. H. Wong and E. Y. B. Pun, 'Polymeric waveguide wavelength filters using electron-beam direct writing,' Appl. Phys. Lett., vol. 79, pp. 3576-3578, 2001 https://doi.org/10.1063/1.1421229
  5. S. W. Ahn, K. D. Lee, D. H. Kim, and S. S. Lee, 'Polymeric wavelength filter based on a Bragg grating using nanoimprint technique,' IEEE Photon. Technol. Lett., vol. 17, no. 11, pp. 2352-2354, 2005 https://doi.org/10.1109/LPT.2005.857606
  6. S. Chou, P. R. Krauss, and P. J. Renstrom, , 'Nanoimprint lithography,' J. Vac. Sci, Technol. B, vol. 14(6), pp. 4129-4133, 1996 https://doi.org/10.1116/1.588605
  7. Y. O. Noh, J. M. Kim, M. S. Yang, H. J. Choi, H. J. Lee, Y. H. Won, and S. G. Han, 'Theremooptic 2$\times$2 asymmetric digital optical switches with zero-voltage operation state,' IEEE Photon. Technol. Lett., vol. 16, pp. 446-448, 2004 https://doi.org/10.1109/LPT.2003.823138