백운 금-은광상에서 산출되는 광석광물과 생성환경

Ore minerals and Genetic Environments from the Baekun Gold-silver Deposit, Republic of Korea

  • 유봉철 (충남대학교 지구환경과학과) ;
  • 이현구 (충남대학교 지구환경과학과) ;
  • 김기중 (충남대학교 지구환경과학과)
  • Yoo, Bong-Chul (Department of geology and environmental Sciences, Chungnam National University) ;
  • Lee, Hyun-Koo (Department of geology and environmental Sciences, Chungnam National University) ;
  • Kim, Ki-Jung (Department of geology and environmental Sciences, Chungnam National University)
  • 발행 : 2006.02.01

초록

백운 금-은광상은 트라이아스기 또는 쥐라기의 엽리상화강섬록암내에 발달된 단층대를 충진한 천열수성 석영맥광상이다. 이 광상의 광화작용은 단층-각력대에 수반되며 2시기로 구분된다. I시기는 다시 조기와 말기로 구분되며 주된 광화시기이다. II시기는 광화작용이 관찰되지 않는다. I시기 소기는 모암변질과 유비철석, 황철석, 자류철석, 섬아연석, 백철석, 황동석, 황석석 및 방연석이 관찰된다. I시기 말기는 금-은광물정출시기로 일렉트럼, 함은사면동석, 스테파나이트, 보울란제라이트, 농홍은석, 휘은석 , 시르메라이트, 자연은, Ag-Te -Sn-S계 광물, Ag-Cu-S계 광물, 황철석, 황동석 및 방연석이 관찰된다. 유체포유물 자료에 의하면, 광화 I시기의 균일화온도와 염농도는 각각 $171.6\~360.8^{\circ}C,\;0.5\~10.2\;wt.\%$로써 광화유체가 천수의 혼입에 의한 냉각과 희석이 있었음을 지시한다. 또한, 광화 I시기에 관찰되는 광물공생군으로부터 구한 생성온도(조기: $236\~>380^{\circ}C$, 말기: $<197\~272^{\circ}C$)와 황분압(조기: $>10^{-7.8}\;atm.,$ 말기: $10^{-14.2\~10^{-16}\;atm.$)이 광화작용이 진행됨에 따라 감소되어 진다. 황($2.4\~6.1\%_{\circ}$(조기=$3.4\~5.3\%_{\circ}$, 말기=$2.4\~6.1\%_{\circ}$)), 산소($4.5\~8.8\%_{\circ}$(석영: 조기=$6.3\~8.8\%_{\circ}$, 말기=$4.5\~5.6\%_{\circ}$)), 수소($-96\~-70\%_{\circ}$(석영: 조기=$-96\~-70\%_{\circ}$, 말기=$-78\~-74\%_{\circ}$, 방해석: 말기=$-87\~-76\%_{\circ}$)) 및 탄소($-6.8\~-4.6\%_{\circ}$(방해석: 말기)) 동위원소 값의 자료로 볼 때, 이 광상의 광화유체는 마그마 기원의 유체가 주종을 이룬 것으로 보이며 광화작용이 진행됨에 따라 기원이 다른 천수의 혼입이 작용한 것으로 해석할 수 있다.

Baekun gold-silver deposit is an epithermal quartz vein that is filling the fault zone within Triassic or Jurassic foliated granodiorite. Mineralization is associated with fault-breccia zones and can be divided into two stages. Stage I which can be subdivided early and late depositional stages is main ore mineralization and stage II is barren. Early stage I is associated with wallrock alteration and the formation of sulfides such as arsenopyrite, pyrite, pyrrhotite, sphalerite, marcasite, chalcopyrite, stannite, galena. Late stage I is characterized by Au-Ag mineralization such as electrum, Ag-bearing tetrahedrite, stephanite, boulangerite, pyrargrite, argentite, schirmerite, native silver, Ag-Te-Sn-S system, Ag-Cu-S system, pyrite, chalcopyrite and galena. Fluid inclusion data indicate that homogenization temperatures and salinity of stage I range from $171.6^{\circ}C\;to\;360.8^{\circ}C\;and\;from\;0.5\;to\;10.2\;wt.\%\;eq.$ NaCl, respectively. It suggest that ore forming fluids were cooled and diluted with the mixing of meteoric water. Also, Temperature (early stage I: $236\~>380^{\circ}C,\;$ late stage $I: <197\~272^{\circ}C$) and sulfur fugacity (early stage $I:\;10^{-7.8}$ a atm., late stage I: $10^{-14.2}\~10^{-l6}atm$.) deduced mineral assemblages from stage 1 decrease with paragenetic sequence. Sulfur ($2.4\~6.1\%_{\circ}$(early stage $I=3.4\~5.3\%_{\circ},\;late\;stage\;I=2.4\~6.1\%_{\circ}$)), oxygen ($4.5\~8.8\%_{\circ}$(quartz: early stage $I=6.3\~8.8\%_{\circ}$, late stage $I=4.5\~5.6\%_{\circ}$)), hydrogen ($-96\~-70\%_{\circ}$ (quartz: early stage $I=-96\~-70\%_{\circ},\;late\;stage\;f=-78\~-74\%_{\circ},\;calcite:\;late\;stage\;I=-87\~-76\%_{\circ}$)) and carbon ($-6.8\~-4.6\%_{\circ}$ (calcite: late stage I)) isotope compositions indicated that hydrothermal fluids may be magmaticorigin with some degree of mixing of another meteoric water for paragenetic time.

키워드

참고문헌

  1. 김규봉, 최위찬, 황재하, 김정환 (1984) 오수도폭지질보고서. 한국동력자원연구소, 30p
  2. 김규한, 中井信之(1988) 남한의 지하수 및 강수의 안정동 위원소조성. 지질학회지, 24권, p. 37-46
  3. 김용준, 이창선 (1988) 장수-운봉지역에 분포하는 화성암류와 화성활동에 대한 연구. 대한지질학회지 , 24권, p. 111-131
  4. 대한광업진흥공사 (1982) 한국의 광상, 제 5호
  5. 박희인, 우영균, 이찬희 (1987) 둔전금광산 남광상의 광석과 유체포유물. 광산지질, 20권, p. 107-118
  6. 이창신 (1989) 진한-장수지역에 분포한 화강암류에 대한 암석지구화학과 금은광상의 성인에 관한 연구. 박사학 위논문, 148p
  7. 이창신, 박영석, 신방섭 (1988) 백운지역 금은광상의 광화 작용에 관한 연구. 대한광산학회지, 25권 , p. 10-20
  8. 전서령, 정재일, 김대현 (2002) 백운폐광산의 방치된 폐석으로 인한 주변 수계의 환경적 영향. 자원환경지질, 35 권, p. 325-337
  9. Bodnar, R. J. (1983) A method of calculating fluid inclu sion volumes based on vapor bubble diameters and PV- T-X properties of inclusion fluids. Econ. Geol. V. 78, p. 535-542 https://doi.org/10.2113/gsecongeo.78.3.535
  10. Bodnar R. J. and Vityk, M. O. (1994) Interpretation of microthermometric data for $H_O$-NaCI fluid inclusions: in De Vivo, B. and Frezzotti, M.L. eds., Fluid inclusions in minerals: Method and applications: Short Course International Mineralogical Assoc., p. 117-130
  11. Craig, J. R. and Barton, P. B. (1973) Thermochemical approximations for sulfosalts. Econ. Geol, v. 68, p. 493-506 https://doi.org/10.2113/gsecongeo.68.4.493
  12. Friedman, I. and O'Neil,J. R. (1977) Compilation of stable isotope fractionation factors of geochemical interest. in Fleisher, M., ed., Data of geochemistry, Sixth Edition: U. S. Geol. Survey Prof. paper 440-KK, p. KK1-KK12
  13. Hass, J. L. (1971) The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure. Econ. Geol., v. 66, p. 940-946 https://doi.org/10.2113/gsecongeo.66.6.940
  14. Keighin, C. W. and Honea, R. M. (1969) The system AgSb- S from $600^{\circ}C$-to $200^{\circ}C$. Mineralium Deposita, v. 4, p. 157-171
  15. Kim, K. R. and Nakai, N. (1981) A study on hydrogen, oxygen and sulfur isotopic ratios of the hot water in South Korea. Geochemistry, V. 15, p. 6-16
  16. Kretschmar, U. and Scott, S. D. (1976) Phase relation involving arsenopyrite in the system Fe-As-S and their application. Canadian Mineralogist, V. 14, p. 364386
  17. Matsuhisa, Y, Goldsmith, R. and Clayton, R. N. (1979) Oxygen isotope fractionation in the system quartzalbite- anorthite-water. Geochim. Cosmochim. Acta, v. 43, p. 1131-1140 https://doi.org/10.1016/0016-7037(79)90099-1
  18. Nakamura, Y. and Shima, H. (1982) Fe and Zn partitioning between sphalerite and stannite(abstr:). Joint Meeting of Soc. Mining Geol. Japan, Assoc. Miner. Petro Econ. Geol. and Miner. Soc. Japan, A-8
  19. Nekrasov, I. J. Sorokin, V. I. and Osadchi, E. G. (1979) Fe and Zn partitioning between stannite and sphalerite and its application in geothermometry. In: Origin and distribution of the elements. L.R. Ahrens, Ed., phys. chern. Earth, V. 34, p. 739-749
  20. Ohmoto, R. and Rye, R. O. (1979) Isotopes of sulfur and carbon. R.L. Barnes. Geochemistry of hydrothermal ore deposits. 2nd ed, Wiley-Interscience. New York, p. 509-567
  21. Shimizu, M. and Shikazono, N. (1985) Iron and zinc partitioning between coexisting stannite and sphalerite: A possible indicator of temperature and sulfur fugacity. Mineralium Deposita, V. 20, p. 314-320
  22. So, C. S. Chi, S. J. Yu, J. S. and Shelton, K. L. (1987) The Jeonui gold-silver mine, Republic of Korea: A geochemical study. Mining Geology, V. 37, p. 313-322
  23. So, C. S. and Shelton, K. L. (1987a) Stable isotope and fluid inclusion studies of gold and silver-bearing hydrothermal vein deposits, Cheonan-CheongyangNonsan mining district, Republic of Korea: Cheonan area. Econ. Geol., V. 82, p. 987-1000 https://doi.org/10.2113/gsecongeo.82.4.987
  24. So, C. S. and Shelton, K. L. (1987b) Fluid inclusion and stable isotope studies of gold-silver-bearing hydro thermal vein deposits, Yeoju mining district, Republic of Korea. Econ. Geol., V. 82, p. 1309-1318 https://doi.org/10.2113/gsecongeo.82.5.1309