감염병소 영상을 위한 $^{99m}Tc$-Transferrin 개발

Development of $^{99m}Tc$-Transferrin as an Imaging Agent of Infectious Foci

  • 김성민 (충남대학교 의과대학 핵의학교실) ;
  • 송호천 (전남대학교 의과대학 핵의학교실)
  • Kim, Seong-Min (Departments of Nuclear Medicine, Chungnam National University School of Medicine) ;
  • Song, Ho-Chun (Chonnam National University Medical School)
  • 발행 : 2006.06.30

초록

목적 : 본 연구의 목적은 $^{99m}Tc$-방사성표지 트렌스페린 ($^{99m}Tc$-transferrin)을 개발하여 감염/염증병소의 진단에 이용할 수 있는지 알아보고, 이를 $^{67}Ga$-Citrate 영상과 비교하고자 하였다. 대상 및 방법 : Succinimidyl 6-hydrazino-nicotinate hydrochloride -chitosan -transferrin (Transferrin)을 합성하고, 여기에 $^{99m}Tc$ 방사성 표지를 시행하였다. $^{99m}Tc$-transferrin의 방사성표지효율은 표지 후 10분, 30분, 1시간, 2시간, 4시간, 8시간에 측정하였다. 포도상구균(ATCC 25923, $2{\times}10^8$ colony forming unite, 0.2 ml)을 접종한 쥐농양모델에서 $^{99m}Tc$-transferrin과 $^{67}Ga$-citrate의 생체내 분포를 평가하고 영상 검사를 실시하였다. 결과: 질량분석계를 이용하여 Transferrin이 성공적으로 제조되었음을 알 수 있었다. $^{99m}Tc$-transferrin의 방사성표지효율은 10분, 30분, 1시간, 2시간, 4시간, 8시간에 각각 $96.2{\pm}0.7%,\;96.4{\pm}0.5%,\;96.6{\pm}1.0%,\;96.9{\pm}0.5%,\;97.0{\pm}0.7%\;and\;95.5{\pm}0.7%$ 이었다. $^{99m}Tc$-transferrin의 단위섭취량은 감염병소에서 $0.18{\pm}0.01\;and\;0.18{\pm}0.01$, 정상근육에서 $0.05{\pm}0.01\;and\;0.04{\pm}0.01$이었고, 감염병소 대 정상근육 섭취비는 30분과 3시간에 각각 $3.7{\pm}0.6\;and\;4.7{\pm}0.4$이었다. $^{99m}Tc$-transferrin 영상에서 10분, 30분, 1시간, 2시간, 4시간 그리고 10시간에서의 병소/배후방사능비는 각각 $2.18{\pm}0.03,\;2.56{\pm}0.11,\;3.08{\pm}0.18,\;3.77{\pm}0.17,\;4.70{\pm}0.45$ 그리고 $5.59{\pm}0.40$이었고, $^{67}Ga$-citrate의 경우 2시간, 24시간, 48시간에 $3.06{\pm}0.84,\;4.12{\pm}0.54\;4.55{\pm}0.74 $이었다. 결론 : Transferrin에 $^{99m}Tc$을 이용한 방사성표지가 성공적으로 이루어졌고, $^{99m}Tc$-transferrin의 표지효율은 8시간까지 95% 이상의 안정된 방사성표지효율을 보였다. $^{99m}Tc$-transferrin을 이용한 감염영상을 성공적으로 얻을 수 있었으며, $^{67}Ga$-citrate 영상과 비교하여 더 빠른 시간 안에 우수한 영상을 얻을 수 있었다. 그러므로 $^{99m}Tc$-transierrin이 감염 병소의 영상진단에 사용될 수 있을 것으로 기대된다.

Purpose: Purpose of this study is to synthesize $^{99m}Tc$-labeled transferrin for injection imaging and to compare it with $^{67}Ga$-titrate for the detection of infectious foci. Materials and methods: Succinimidyl 6-hydrazino-nicotinate hydrochloride-chitosan-transferrin (Transferrin) was synthesized and radiolabeled with $^{99m}Tc$. Labeling efficiencies of $^{99m}Tc$-Transferrin were determined at 10 min, 30 min, 1 hr, 2 hr, 4 hr and 8 hr. Biodistribution and imaging studies with $^{99m}Tc$-Transferrin and $^{67}Ga$-citrate were performed in a rat abscess model induced with approximately $2{\times}10^8$ colony forming unit of Staphylococcus aureus ATCC 25923. Results: Successful synthesis of Transferrin was confirmed by mass spectrometry. Labeling efficiency of $^{99m}Tc$-Transferrin was $96.2{\pm}0.7%,\;96.4{\pm}0.5%,\;96.6{\pm}1.0%,\;96.9{\pm}0.5%,\;97.0{\pm}0.7%\;and\;95.5{\pm}0.7%$ at 10 min, 30 min, 1 hr, 2 hr, 4 hr and 8 hr, respectively. The injected dose per tissue gram of $^{99m}Tc$-Transferrin was $0.18{\pm}0.01\;and\;0.18{\pm}0.01$ in the lesion and $0.05{\pm}0.01\;and\;0.04{\pm}0.01$ in the normal muscle, and lesion-to-normal muscle uptake ratio was $3.7{\pm}0.6\;and\;4.7{\pm}0.4$ at 30 min and 3 hr, respectively. On image, lesion-to-background ratio of $^{99m}Tc$-Transferrin was $2.18{\pm}0.03,\;2.56{\pm}0.11,\;3.08{\pm}0.18,\;3.77{\pm}0.17,\;4.70{\pm}0.45\;and\;5.59{\pm}0.40$ at 10 min, 30 min, 1 hr, 2 hr, 4 hr and 10 hr and those of $^{67}Ga$-citrate was $3.06{\pm}0.84,\;4.12{\pm}0.54\;and\;4.55{\pm}0.74 $ at 2 hr, 24 hr and 48 hr, respectively. Conclusion: Transferrin is successfully labeled with $^{99m}Tc$, and its labeling efficiency was higher than 95% and stable for 8 hours. $^{99m}Tc$-Transferrin scintigraphy showed higher image quality in shorter time compared to $^{67}Ga$-citrate image. $^{99m}Tc$-transferrin is supposed to be useful in the detection of the infectious foci.

키워드

참고문헌

  1. Sheldon WH, Mildvan D, Allen JC. Some serum protein and cellular constituents of inflammatory lesions. Collection of exudates in a chamber adhered over skin wounds of rabbits. J Exp Med 1967;128:113-33
  2. Marx JJ. Iron and infection: competition between host and microbes for a precious element. Best Pract Res Clin Haematol 2002;15: 411-26 https://doi.org/10.1053/beha.2002.0001
  3. Li H, Qian ZM. Transferrin/transferrin receptor-mediated drug delivery. Med Res Rev 2002;22:225-50 https://doi.org/10.1002/med.10008
  4. Sun H, Li H, Sadler PJ. Transferrin as a metal ion mediator. Chem Rev 1999;99:2817-42 https://doi.org/10.1021/cr980430w
  5. Clausen J, Edeling CJ, Fogh J. $^{67}Ga$ binding to human serum proteins and tumor components. Cancer Res 1974;34:1931-7
  6. Lavender JP, Lowe J, Barker JR. Ga-67 citrate scanning in neoplastic and inflammatory lesions. Br J Radiol 1971;44:361-6 https://doi.org/10.1259/0007-1285-44-521-361
  7. Staab EV, McCartney WH. Role of gallium-67 in inflammatory disease. Semin Nucl Med 1978;8:219-34 https://doi.org/10.1016/S0001-2998(78)80030-0
  8. Alazraki NP. Gallium-67 imaging in infection. In: Early PJ, Sode DB, editors. Principles and practice of nuclear medicine, 2nd Ed. St. Louis: Mosby; 1995. p.702-13
  9. Peters AM. The use of nuclear medicine in infections. Br J Radiol 1998;71:252-61 https://doi.org/10.1259/bjr.71.843.9616233
  10. Becker B, Meller J. The role of nuclear medicine in infection and inflammation. Lancet Infect Dis 2001;1:326-33 https://doi.org/10.1016/S1473-3099(01)00146-3
  11. Goldsmith SJ, Palestro CJ, Vallabhajosula S. Infectious disease. In: Wagner HN, Szabot Z, Buchanan J, editors. Principles of Nuclear medicine. 2nd Ed. Philadelphia: W.B. Saunders Company; 1995. p. 729-30
  12. McIntyre PA, Larson SM, Eikman EA, Colman M, Scheffel U, Hodkinson BA. Comparison of the metabolism of iron-labeled transferrin (Fe-TF) and indium-labeled transferrin (In-TF) by the erythropoietic marrow. J Nucl Med 1974;15:856-62
  13. Rain JD, Najean Y, Billotey C. Bone marrow scintigraphy as a useful method for estimating the physiological status of bone marrow and spleen in polycythaemia vera. Leuk Lymphoma 1996;22(Suppl):105-10 https://doi.org/10.3109/10428199609074367
  14. Binswanger RO, Rosler H, Noelpp U, Matter L, Haertel M. The bedside determination of extravascular lung water: a non-invasive double indicator technique using $^{123}I$-antipyrine, $^{113m}In$-transferrin and external counting. Eur J Nucl Med 1978;3:109-14
  15. Mintun MA, Dennis DR, Welch MJ, Mathias CJ, Schuster DP. Measurements of pulmonary vascular permeability with PET and gallium-68 transferrin. J Nucl Med 1987;28:1704-16
  16. Berry CR, Guilford WG, Koblik PD, Hornof WH, Fisher P. Scintigraphic evaluation of four dogs with protein-losing enteropathy using $^{111}indium$-labeled transferrin. Vet Radiol Ultrasound 1997;38: 221-5 https://doi.org/10.1111/j.1740-8261.1997.tb00844.x
  17. Prost AC, Anakok M, Aurengo A, Salomon JC, Legrand JC, Rosselin G. Tissue distribution of $^{131}I$-radiolabeled transferrin in the athymic nude mouse: localization of a human colon adenocarcinoma HT-29 xenograft. Int J Rad Appl Instrum B 1990;17:209-16 https://doi.org/10.1016/0883-2897(90)90149-U
  18. Goodwin DA, Goode R, Brown L, Imbornone CJ. $^{111}In$-labeled transferrin for the detection of tumors. Radiology 1971;100:175-9 https://doi.org/10.1148/100.1.175
  19. Aloj L, Carson RE, Lang L, Herscovitch P, Eckelman WC. Measurement of transferrin receptor kinetics in the baboon liver using dynamic positron emission tomography imaging and [$^{18}F$]holo-transferrin. Hepatology 1997;25:986-90 https://doi.org/10.1002/hep.510250432
  20. Abrams MJ, Juweid M, tenKate CI, Schwartz DA, Hauser MM, Gaul FE, et al. Technetium-99m-human polyclonal IgG radiolabeled via the hydrazino nicotinamide derivative for imaging focal sites of infection in rats. J Nucl Med 1990;31:2022-8
  21. Claessens RA, Boerman OC, Koenders EB, Oyen WJ, van der Meer JW, Corstens FH. Technetium-99m labelled hydrazinonicotinamido human non-specific polyclonal immunoglobulin G for detection of infectious foci: a comparison with two other technetium-labelled immunoglobulin preparations. Eur J Nucl Med 1996;23:414-21 https://doi.org/10.1007/BF01247370
  22. Laverman P, Dams ET, Oyen WJ, Storm G, Koenders EB, Prevost R, et al. A novel method to label liposomes with ${99m}Tc$ by the hydrazino nicotinyl derivative. J Nucl Med 1999;40:192-7
  23. Kircheis R, Wightman L, Schreiber A, Robitza B, Rossler V, Kursa M, et al. Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Ther 2001;8:28-40 https://doi.org/10.1038/sj.gt.3301351
  24. Kircheis R, Kichler A, Wallner G, Kursa M, Ogris M, Felzmann T, et al. Coupling of cell-binding ligands to polyethylenimine for targeted gene delivery. Gene Ther 1997;4:409-18 https://doi.org/10.1038/sj.gt.3300418
  25. Peter J, Unverzagt C, Engel WD, Renauer D, Seidel C, Hosel W. Identification of carbohydrate deficient transferrin forms by MALDI-TOF mass spectrometry and lectin ELISA. Biochim Biophys Acta 1998;1380:93-101 https://doi.org/10.1016/S0304-4165(97)00135-9
  26. Rojas-Burke J. Health officials reacting to infection mishaps. J Nucl Med 1992;23:13N-14N, 27N
  27. Kaim A, Maurer T, Ochsner P, Jundt G, Kirsch E, Muller-Brand J. Chronic compilcated osteomyelitis of the appendicular skeleton; diagnosis with technetium-99m labeled monoclonal antigranulocyte antibody-immunoscintigraphy. Eur J Nucl Med 1997;24:732-738 https://doi.org/10.1007/BF00879660
  28. Kobayashi H, Kim IS, Drumm D. Favourable effects of glycolate conjugation on the biodistribution of humanized anti-Tac Fab fragment. J Nucl Med 1999;40:837-45
  29. Kim IS, Yoo TM, Kobayashi H, Kim MK, Le N, Wang QC, et al. Chemical modification to reduce renal uptake of disulfied-bonded various region fragment of anti-Tac monoclonal antibody labeled with ${99m}Tc$. Bioconjugate Chem 1999;10:447-53 https://doi.org/10.1021/bc980129m