DOI QR코드

DOI QR Code

Effects of PEG (Polyethylene Glycol) Concentration and Mixing Ratio of PEG/Gly (Glycerol) on the Physical Properties of Silk Fibroin Films

PEG(polyethylene glycol) 농도와 PEG/Gly(glycerol) 흔합비에 따른 견 피브로인 필름의 물성

  • Ma, Yu-Hyun (Dept. of Food Science & Technology, College of Agriculture & Life Sciences, Chungnam National University) ;
  • Song, Kyung-Bin (Dept. of Food Science & Technology, College of Agriculture & Life Sciences, Chungnam National University)
  • Published : 2006.01.01

Abstract

To study the effects of plasticizer concentration and its ratio on the physical properties of silk fibroin films, polyethylene glycol (PEG) was used at 4 different concentrations; 1, 2, 3, $4.5\%$ (w/v). Tensile strength (TS) and water vapor permeability (WVP) increased with the increase of PEG concentration, while opposite trend was observed for percent elongation of silk fibroin films. WVP of silk fibroin films increased from $2.54\;ng{\cdot}m/m^2spa$ for $1\%$ of PEG to $5.41\;ng{\cdot}m/m^2sPa$ for $4.5\%$. In addition, a mixture of PEG and glycerol (Gly) as a plasticizer was used at the ratio of 100:0, 75:25, 50:50, 25:75, and 0:100 (w/w). Percent elongation of the films was improved to $130.95\%$ when the ratio of 75:25 was used. On the contrary, WVP of silk fibroin films increased with the decrease of the ratio of PEG:Gly. Effect of the plasticizer concentration and its ratio on the color of silk fibroin films was negligible. These results suggest that mixture of PEG and Gly as a plasticizer provide more flexible than PEG alone in silk fibroin films, and the best ratio of PEG to Gly was 75:25.

견 피브로인 용액 에 PEG를 농도 별로 처리하거나 PEG와 Gly를 혼합하여 사용하여 필름을 제조한 뒤 그 물성을 측정하였다. PEG의 농도가 $1\%$인 견 피브로인 필름에서 32.54 Mpa로 가장 높은 인장강도를 나타냈고, PEG의 농도가 높아 질수록 인장강도는 감소하였다. 인장강도와는 반대로 PEG의 농도가 증가할수록 신장률은 증가하는 경향을 보였는데 PEG의 농도가 $3\%$$4.5\%$로 증가할 때 $350\%$ 이상의 높은 증가율을 보였고 또한 투습도의 경우 $66\%$ 증가하였다. PEG와 Gly의 비율을 다르게 한 경우 인장강도는 PEG:Gly의 비가 100:0일 때 13.72 Mpa로 가장 높았고, 0:100일 때 4.58 Mpa로 가장 낮았다. 이에 반하여 신장률은 PEG:Gly의 비가 75:25일 때 $130.95\%$로 가장 높게 나타났다. 투습도의 경우 Gly만을 넣어 만든 경우 $5.13\;ng{\cdot}m/m^2s$ Pa로 투습도가 가장 높게 나타났고 Gly의 비가 높아질수록 투습도가 증가하는 경향을 보였다. 전체적인 Hunter L, a, b와 ${\Delta}E$ 값은 PEG 농도와 PEG:Gly의 혼합하여 만든 필름 사이에 뚜렷한 차이가 없었다. 본 실험 결과 견 피브로인 필름의 가소제로써 PEG와 Gly를 혼합하여 사용할 경우 PEG만을 사용하여 만든 필름보다 신장률이 크게 증가하며, 또한 PEG와 Gly을 75:25의 비로 흔용하여 사용한 경우가 Gly의 첨가로 투습도가 조금 증가하기는 하였으나 인장강도는 상업용 LDPE (low density polyethylene)와 유사한 수치를 나타내면서도 높은 신장률을 가지고 있기 때문에 식품포장재로 활용이 가장 적합하다고 판단된다.

Keywords

References

  1. Guilbert S. 1986. Technology and application of edible pro-tective films. In Food Packaging and Preservation, Theory and Practice. Mathlouthi M, ed. Elsevier Applied Science Pud Co, London, England. p 371-394
  2. Yang SB, Cho SY, Rhee C. 1997. Preparation of edible films from soybean meal. Korean J Food Sci Technol 29: 452- 459
  3. Gennadios A, Weller CL. 1990. Edible films and coatings from wheat and corn proteins. Food Technol 44: 63-69
  4. You BJ, Shim JM. 2001. Effect of extracting conditions on the physical properties of fish meal protein isolate film. J Korean Soc Food Sci Nutr 30: 494-499
  5. Choi HK, Hahm JH. 1995. Preparation and structural char-acterization of silk fibroin powder and film. Korean J Seric Sci 37: 142-153
  6. Asakura T, Demura M, Tsutsumi M. 1988. $^{23}Na and ^{27}Al$ NMR studies of the interaction between bombyx mori silk fibroin and metal ions trapped in the porous silk fibroin membrane. Makromol Chem Rapid Commun 9: 835-839 https://doi.org/10.1002/marc.1988.030091210
  7. Qian J, Liu Y, Lui H, Yu T, Deng J. 1996. An amperometric new methylene blue N-mediating sensor for hydrogen peroxide based on regenerated silk fibroin as an immo-bilization matrix for peroxidase. Analytical Biochemistry 236: 208-214 https://doi.org/10.1006/abio.1996.0158
  8. Minoura N, Aiba S, Gotoh Y, Tsukada M, Imai Y. 1995. Attachment and growth of cultured fibroblast cells on silk protein matrices. J Biomed Mater Res 29: 1215-1221 https://doi.org/10.1002/jbm.820291008
  9. Ma Y, Song KB. 2005. Physical properties of silk fibroin films treated with various plasticizer. J Food Sci Nutr 10: 187-190 https://doi.org/10.3746/jfn.2005.10.2.187
  10. Banker GS, Gore AY, Swarbrick J. 1966. Water vapour transmission properties of free polymer films. J Pharm Phaymacol 18: 457-466 https://doi.org/10.1111/j.2042-7158.1966.tb07906.x
  11. Gontard N, Guilbert S, Cuq J. 1993. Water and glycerol as plasticizers affect mechanical and water vapor barrier properties of an edible wheat gluten film. J Food Sci 58: 206-211 https://doi.org/10.1111/j.1365-2621.1993.tb03246.x
  12. Gennadios A, Weller CL, Testin RF. 1993. Property modi-fication of edible wheat, gluten-based films. Trans ASAE 36: 465-470 https://doi.org/10.13031/2013.28360
  13. Donhowe IG, Fennema O. 1993. The effect of plasticizers on crystallinity, permeability, and mechanical properties of methylcellulose films. J Food Process Preserv 17: 247-257 https://doi.org/10.1111/j.1745-4549.1993.tb00729.x
  14. McHugh TH, Kochta JM. 1994. Sorbitol vs glycerol plas-ticized whey protein edible films: integrated oxygen per-meability and tensile property evaluation. J Agric Food Chem 42: 841-845 https://doi.org/10.1021/jf00040a001
  15. Sothornvit R, Kochta JM. 2001. Plasticizer effect on me-chanical properties of $\beta$-lactoglobulin films. J Food Eng 50: 149-155 https://doi.org/10.1016/S0260-8774(00)00237-5
  16. Galietta G, Gioia LD, Guilbert S, Cuq B. 1998. Mechanical and thermomechanical properties of films based on whey proteins as affected by plasticizer and cross-linking agent. J Dairy Sci 81: 3123-3130 https://doi.org/10.3168/jds.S0022-0302(98)75877-1
  17. ASTM. 1995. Standard test methods for tensile properties of thin plastic sheeting. ASTM D 882-91. Annual Book of ASTM Standards, American Society for Testing and Ma-te-rials. Philadelphia, PA, USA
  18. Kim KM, Weller MA, Gennadios A. 2002. Heat curing of soy protein films at atmospheric and sub-atmospheric con-dition. J Food Sci 67: 708-713 https://doi.org/10.1111/j.1365-2621.2002.tb10663.x
  19. ASTM. 1995. Standard test methods for water vapor transmission of materials. ASTM E 96-95. Annual Book of ASTM Standards. American Society for Testing and Materials. Philadelphia, PA, USA
  20. Park H, Manjeet S. 1995. Gas and water vapor barrier properties of edible films form protein and cellulose mate-rials. J Food Eng 25: 497-507 https://doi.org/10.1016/0260-8774(94)00029-9
  21. Clydesdale FM. 1984. Color measurement. In Food Analysis Principles and Techniques. Gruenwedel DW, Whitaker JR, eds. Marcel Dekker, Inc, New York, NY, USA. Vol 1, p 95
  22. Hardenburg RE. 1967. Wax and related coatings for hor-ticultural product. A bibliography. Agricultural Research Service Bulletin 51-15, United State Department of Agri-culture, Washington, D.C
  23. Lee M, Lee S, Ma Y, Park S, Bea D, Ha S, Song KB. 2005. Effect of plasticizer and cross-linking agent on the physical properties of protein films. J Food Sci Nutr 10: 88-91 https://doi.org/10.3746/jfn.2005.10.1.088
  24. Cuq B, Gontard N, Cuq JL, Guilbert S. 1997. Selected func-tional properties of fish myofibrillar protein-based films as affected by hydrophilic plasticizer. J Agric Food Chem 45: 622-626 https://doi.org/10.1021/jf960352i
  25. Lieberman ER, Gilbert SG. 1973. Gas permeation of col-lagen films as affected by cross-linking, moisture, and plas-ticizer content. J Polymer Sci 41: 33-43
  26. Park HJ, Weller CL, Vergano PL, Testin RF. 1993. Per-meability and mechanical properties of cellulose-based edible films. J Food Sci 58: 1361 https://doi.org/10.1111/j.1365-2621.1993.tb06183.x
  27. Banker GS. 1966. Film coating theory and practice. J Pharm Sci 55: 81 https://doi.org/10.1002/jps.2600550118
  28. Krochta JM. 1997. Edible protein films and coatings. In Food Proteins and Their Applications. Damodaran S, Paraf A, eds. Marcel Dekker, Inc, New York, NY, USA. p 529- 550
  29. Lee S, Lee MS, Song KB. 2003. Effect of $\gamma$-irradiation on physico-chemical properties of zein films. J Food Sci Nutr 8: 343-348 https://doi.org/10.3746/jfn.2003.8.4.343
  30. Park HJ, Bunn JM, Weller CL, Vergano PL, Testin RF. 1994. Water permeability and mechanical properties of grain protein-based films as affected by mixture of polyethylene glycerol and glycerin plasticizers. Trans ASAE 37: 1281- 1285 https://doi.org/10.13031/2013.28208
  31. Gennadios A, Weller CL, Hanna MA, Froning GW. 1996. Mechanical and barrier properties of egg albumen films. J Food Sci 61: 585-589 https://doi.org/10.1111/j.1365-2621.1996.tb13164.x
  32. Rhim JW, Wellwe CL, Harn KS. 1998. Chracteristics of chitosan films as affected by the type of solvent acid. Food Sci Biotechnol 7: 263-268
  33. Song TH, Kim CL. 1999. Effect of calcium addition on physicochemical properties of cellulose-based edible films. Korean J Food Sci Thecnol 31: 99-105

Cited by

  1. 다양한 가소제와 Ferulic Acid 처리한 Gelidium corneum 필름의 물성 vol.38, pp.6, 2006, https://doi.org/10.3746/jkfn.2009.38.6.727
  2. Polyethylene Glycol의 분자량 및 NCO index의 변화에 따른 Hydrophilic Reactive Hotmelt Polyurethane의 물성 변화 vol.30, pp.2, 2006, https://doi.org/10.5764/tcf.2018.30.2.90