Estimation of User Activity States for Context-Aware Computing in Mobile Devices

모바일 디바이스에서 상황인식 컴퓨팅을 위한 사용자 활동 상태 추정

  • Baek Jonghun (Dept. of Information and Communications Kyungpook National University) ;
  • Yun Byoung-Ju (School of Electrical Engineering and Computer Science, Kyungpook National University)
  • 백종훈 (경북대학교 정보통신학과) ;
  • 윤병주 (경북대학교 전자전기컴퓨터학부)
  • Published : 2006.01.01

Abstract

Contort-aware computing technology is one of the key technology of ubiquitous computing in the mobile device environment. Context recognition computing enables computer applications that automatically respond to user's everyday activity to be realized. In this paper, We use accelerometer could sense activity states of the object and apply to mobile devices. This method for estimating human motion states utilizes various statistics of accelerometer data, such as mean, standard variation, and skewness, as features for classification, and is expected to be more effective than other existing methods that rely on only a few simple statistics. Classification algorithm uses simple decision tree instead of existing neural network by considering mobile devices with limited resources. A series of experiments for testing the effectiveness of the our context detection system for mobile applications and ubiquitous computing has been performed, and its result is presented.

모바일 단말 환경에서 상황인식 컴퓨팅 기술은 유비쿼터스 컴퓨팅의 핵심기술 중 하나이다. 상황인식 컴퓨팅은 사용자의 일상생활 활동에 능동적으로 반응하는 컴퓨터 응용들을 실현 가능하게 한다. 본 논문에서는 물체나 인간의 물리적인 활동 상태를 감지할 수 있는 가속도센서를 사용하여 모바일 디바이스에 적용한다. 인간의 활동 상태를 추정하기위한 방법은 평균, 표준 편차, 왜도와 같은 다양한 통계치를 분류를 위한 특징으로 활용하는 것이 몇몇 간단한 통계치만을 의존하는 기존의 방법들 보다 더 효과적일 것이다. 분류 알고리듬은 제한된 리소스를 가진 모바일 디바이스를 고려하여 기존의 신경망 대신 간단한 결정 트리를 이용하고자 한다. 유비쿼터스 컴퓨팅과 모바일 응용들을 위한 우리의 상황 검출 시스템의 실험은 기존의 방법들 보다 성능이 향상되었으며 그 결과를 제시한다.

Keywords

References

  1. G. D. Abowd and E. D. Mynatt. 'Charting Past, present, and future research in ubiquitous computing', ACM Transactions on Computer-Human Interaction, 7(1): 29-58, 2000 https://doi.org/10.1145/344949.344988
  2. C. Randell and H. L. Muller, 'The Well Mannered Wearable Computer', Personal and Ubiquitous Computing, pp. 31-36, 2002 https://doi.org/10.1007/s007790200003
  3. B. N. Schilit, N. Adams, and R. Want, 'Context-Aware Computing Applications', Proceedings of the 1st International Workshop on Mobile Computing Systems and Applications, 1994, pp. 85-90 https://doi.org/10.1109/MCSA.1994.512740
  4. C. Randell and H. L. Muller, 'Context Awareness by Analyzing Accelerometer Data', The Metadata International Symposium on Wearable Computers, pp. 175-176, 2000 https://doi.org/10.1109/ISWC.2000.888488
  5. S. Masaki, T. Toshiyo, F. Toshiro, and F. Yasuhiro, 'Classification of walking pattern using acceleration waveform in elderly people', Annual EMBS International Conference, In Engineering in Medicine and Biology Society, pp. 1356-1359, 2000 https://doi.org/10.1109/IEMBS.2000.897990
  6. J. Farringdon, A. J. Moore, N. Tilbury, J. Chruch and P. D. Biemond, 'Wearable Sensor Badge & Sensor Jacket for Context Awareness', In Proceedings of The Third International Symposium on Wearable Computers, pp. 107-113, 1999 https://doi.org/10.1109/ISWC.1999.806681
  7. A. Schmidt, H. W. Gellersen, and M. Beigl, 'Wearable Context-Awareness Component', In Proceedings of The Third International Symposium on Wearable Computers, pp. 176-177, 1999 https://doi.org/10.1109/ISWC.1999.806716
  8. A. Wilson and S. Shafer, 'XWand: UI for Intelligent Spaces', In Proc. CHI, pp. 545-552, ACM, 2003 https://doi.org/10.1145/642611.642706
  9. K. Partrige, S. Chatterjee, V. Sazawal, G. Borriello, and R. Want, 'TiltType: Accelerometer-Supported Text Entry for Very Small Devices', In UIST '02: In Proceedings of the 15th annual ACM Symposium on User Interface Software and Technology, ACM Press, pp. 201-204, 2002 https://doi.org/10.1145/571985.572013
  10. J. K. Perng, B. Fisher, S. Hollar, and K. S. J. Pister, 'Acceleration Sensing Glove(ASG)', In Proceedings of The Third International Symposium on Wearable Computers, pp. 178-179, 1999 https://doi.org/10.1109/ISWC.1999.806717
  11. B. Milner, 'Handwriting recognition using acceleration-based motion detection', lEE Colloquium on Document Image Processing and Multimedia, pp. 5/1-5/6, 1999
  12. K. Hinckley, J. Pierce, M. Sinclair, and E. Horvitz, 'Sensing techniques for mobile interaction', In UIST 2000, pp. 91-100, ACM, 2000 https://doi.org/10.1145/354401.354417
  13. Y. Yokokohji, Y. Sugawara, and T. Yoshikawa, 'Accurate Image Overlay on Video See-through HMDs Using Vision and Accelerometers', Virtual Reality 2000, pp. 247-254, 2000 https://doi.org/10.1109/VR.2000.840505
  14. J. Baek, G. Lee, W. Park, and B. Yun, 'Accelerometer Signal Processing for User Activity Detection', KES 2004, LNAl 3215, pp. 610-617, 2004
  15. V. Gagaglio and B. Merminod, 'Real-Time calibration of length of steps with GPS and accelerometers', In Proceeding of GNSS, pp. 599-605, 1999
  16. H. H. S. Liu and G. K. S. Pang, 'Accelerometer for mobile robot positioning', IEEE transactions on Industry Applications, pp. 812-818, 2001 https://doi.org/10.1109/28.924763
  17. E. I. Gaura, R. J. Rider, N. Steele, and Naguib, 'Neural-network compensation methods for capacitive micromachined accelerometers for use in telecare medicine', Information Technology in Biomedicine, pp. 248-252, 2001 https://doi.org/10.1109/4233.945296
  18. M. Sekine, Y. Abe, M. Sekimoto, Y. Higashi, T. Fujimoto, T. Tamura, and Y. Fukui, 'Assessment of Gait Parameter in Hemiplegic Patients by Accelerometry', Engineering in Medicine and Biology Society, vol.3, pp. 1879-1882, 2000 https://doi.org/10.1109/IEMBS.2000.900456
  19. C. V. C. Bouten, K. T. M. Koekkoek, M. Verduin, R. Kodde, and J. D. Janssen, 'A Triaxial Accelerometer and Portable Data Processing Unit for the Assessment of Daily Physical Activity', Biomedical Engineering, vol.44 : (3), pp. 136-147, 1997 https://doi.org/10.1109/10.554760
  20. K. Parsa, J. Angeles, and A. K. Misra, 'Pose-and-Twist Estimation of a Rigid Body Using Accelerometers', In Proceedings of IEEE International Conference on Robotics and Automation, vol.3, pp. 2873-2878, 2001 https://doi.org/10.1109/ROBOT.2001.933057
  21. C. Lanni, F. Pugliese, and M. Ceccarelli, 'An Experimental Validation of CaPaMan as Earthquake Simulator', IEEE/ ASME International Conference on Advanced Intelligent Mechatronics, vol.1, pp. 153-158, 2001 https://doi.org/10.1109/AIM.2001.936446
  22. K. Takubo, T. Yanada, H. Furukawa, M. Nagata, K. Koganemaru, W. Nakayama, Y. Shimizu, Y. Araki, and A. Takahashi, 'Innovative Spectral Intensity Transducer Using Three-axial Micromachining Accelerometer for Earthquake Crisis Management', Emerging Technologies and Factory Automation, vol.1, pp. 379-384, 1999 https://doi.org/10.1109/ETFA.1999.815380
  23. Z. Wendong, Z. Zhaoying, M. Baohua, X. Jijun, C. Ji, W. Xiaohao, et al, 'Automobile Crusher Gauge', Instrumentation and Measurement Technology Conference, vol.2, pp. 973-976, 1998 https://doi.org/10.1109/IMTC.1998.676868
  24. R. Gomery and G. Leach, 'Fence Vibrations', Aerospace and Electronics Systems Magazine, pp. 3-6, 2000 https://doi.org/10.1109/62.873468
  25. A. Jinzenji, T. Sasamoto, K. Aikawa, S. Yoshida, and K. Aruga, 'Acceleration Feedforward Control Against Rotational Disturbance in Hard Disk Drives', Magnetics, pp. 888-893, 2000 https://doi.org/10.1109/20.917637
  26. Sang-Eun Baek and Seung-Hi Lee, 'Vibration Rejection Control for Disk Drives by Acceleration Feedforward Control', Decision and Control, vol.5, pp. 5259-5263, 1999 https://doi.org/10.1109/CDC.1999.833389
  27. M. C. Algrain and J. Quinn, 'Accelerometer based line-of-sight stabilization approach for pointing and tracking systems', Second IEEE Conference on Control Applications, Vancouver, British Columbia, Canada, pp. 159-163, 1993 https://doi.org/10.1109/CCA.1993.348288