DOI QR코드

DOI QR Code

Effects of the Loading Rate and Humidity in the Fracture Toughness Testing of Alumina

  • Cho, Seong-Jai (Division of Chemical Metrology and Materials Evaluation, Korea Research Institute of Standards and Science) ;
  • Kim, Jai-Chun (Division of Chemical Metrology and Materials Evaluation, Korea Research Institute of Standards and Science) ;
  • Yoon, Kyung-Jin (Division of Chemical Metrology and Materials Evaluation, Korea Research Institute of Standards and Science) ;
  • Chu, Min-Cheol (Division of Chemical Metrology and Materials Evaluation, Korea Research Institute of Standards and Science) ;
  • Lee, Yoon-Cheol (Division of Chemical Metrology and Materials Evaluation, Korea Research Institute of Standards and Science) ;
  • Quinn George (Ceramics Division, National Institute of Standards and Technology) ;
  • Lee, Hong-Lim (Department of Ceramic Engineering, Yonsei University)
  • Published : 2006.01.01

Abstract

To test the fracture toughness of alumina; a Surface-Crack-in-Flexure (SCF) method, a Single-Edge-Precracked-Beam (SEPB) method and a Single-Edge-V-Notched-Beam (SEVNB) method were used at crosshead rates ranging from 0.005 mm/min to 2 mm/ min and relative humidity ranging from $15\%\;to\;80\%$. The results show that the fracture toughness tested by the SCF method increases with either an increasing loading rate or decreasing relative humidity; in contrast, the toughness by the SEPB method and the SEVNB method does not depend on the loading rate or the relative humidity. Theoretical analysis of the way slow crack growth affects the apparent fracture toughness indicates that the three testing methods have different effects with respect to the loading rate and the relative humidity; moreover, these differences are attributable to differences in the size of the cracks or notches.

Keywords

References

  1. R. W. Davidge, J. R. McLaren, and B. Tappin, 'Strength-Probability-Time (SPT) Relationships in Ceramics,' J. Mat. Sci., 8 1699-705 (1973) https://doi.org/10.1007/BF02403519
  2. P. J. Dwivedi and D. J. Green, 'Determination of Subcritical Crack Growth Parameters by In Situ Observation of Indentation Cracks,' J. Am. Ceram. Soc., 78 [8] 2122-28 (1995) https://doi.org/10.1111/j.1151-2916.1995.tb08624.x
  3. J. E. Ritter, 'Engineering Design and Fatigue Failure of Brittle Materials,' pp. 667-686 in Fracture mechanics of ceramics, Vol. 4 crack growth and microstructure, edited by R. C. Bradt, D. P. H. Hasselman, and F. F. Lange, Plenum Press, New York, 1978
  4. D. B. Marshall and B. R. Lawn, 'Flaw Characteristics in Dynamic Fatigue: The Influence of Residual Contact Stress,' J. Am. Ceram. Soc., 63 532-36 (1980) https://doi.org/10.1111/j.1151-2916.1980.tb10759.x
  5. K. Zeng, K. Breder, and D. Rowcliffe, 'Comparison of Slow Crack Growth Behavior in Alumina and SiC-Whisker-Reinforced Alumina,' J. Am. Ceram. Soc., 76 [7] 1673-80 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb06634.x
  6. C. C. McMahon, 'Relative Humidity and Modulus of Rupture,' J. Am. Ceram. Soc., 58 [9] 873 (1979)
  7. G. K. Bansal, W. H. Duckworth, and D. E. Niesz, 'Strength-Size Relations in Ceramic Materials: Investigation of an Alumina Ceramic,' J. Am. Ceram. Soc., 59 [11-12] 472-78 (1976) https://doi.org/10.1111/j.1151-2916.1976.tb09411.x
  8. S. J. Cho, K. J. Yoon, J. J. Kim, and K. H. Kim, 'Influence of Humidity on the Flexural Strength of Alumina,' J. Eur. Ceram. Soc., 20 761-64 (2000) https://doi.org/10.1016/S0955-2219(99)00205-8
  9. J. Kubler, 'Fracture Toughness of Ceramics Using the SEVNB Method; Round Robin,' VAMAS Report No. 37, Swiss Federal Laboratories for Materials Testing and Research, Switzerland (1999)
  10. J. K. Park. K. Yasuda. and Y. Matsuo. 'Effect of Crosshead Speed on the Fracture Toughness of Soda-Lime Glass, $Al_2O_3$, and $Si_3N_4$ Ceramics Determined by the Surface Crack in Flexure (SCF) Method,' J. Mat. Sci., 36 [9] 2335-42 (2001) https://doi.org/10.1023/A:1017537310557
  11. G. D. Quinn, J. J. Kubler, and R. J. Gettings, 'Fracture Toughness of Advanced Ceramics by the Surface Crack in Flexure (SCF) Method: A VAMAS Round Robin,' VAMAS Report No. 17, National Institute of Standards and Technology, Gaithersburg, MD, 1994
  12. T. Nose and T. Fujii, 'Evaluation of Fracture Toughness for Ceramic Materials by a Single-Edge Precracked-Beam Method,' J. Am. Ceram. Soc., 71 [5] 328-33 (1988) https://doi.org/10.1111/j.1151-2916.1988.tb05049.x
  13. S. J. Cho, K. J. Yoon, Y. C. Lee, and M. C. Chu, 'Effects of Environmental Temperature and Humidity on the Flexural Strength of Alumina and Measurement of Inert Strength,' Mater. Lett., 57 2751-54 (2003) https://doi.org/10.1016/S0167-577X(02)01370-8
  14. Fine Ceramics: Determination of Fracture Toughness at Ambient Temperature by Single Edge Precracked Beam (SEPB) Method, ISO DIS 15732; International Standardization Organization, 2000
  15. J. J. Swab and G. D. Quinn, 'Effect of Pre crack 'Halos' on Fracture Toughness Determination by the Surface Crack in Flexure Method,' J. Am. Ceram. Soc., 81 [9] 2261-68 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02620.x
  16. S. M. Wiederhorn, 'Subcritical Crack Growth in Ceramics,' in Fracture Mechanics of Ceramics, Vol. 2, pp. 613-46, Edited by R. C. Bradt, D. P. H. Hasselman, and F. F. Lange, Plenum Press, New York, 1974
  17. J. B. Wachtman, Mechanical Properties of Ceramics, Ch. 8., John Wiley & Sons, Inc., New York, 1996
  18. S. J. Bennison and B. R. Lawn, 'Role of Interfacial Grainbridging Sliding Friction in the Crack-Resistance and Strength Properties of Nontransforming Ceramics,' Acta Metall., 37 [10] 2659-71 (1989) https://doi.org/10.1016/0001-6160(89)90299-X
  19. R. F. Cook, B. R. Lawn, and C. J. Fairbanks, 'Microstructure-Strength Properties in Ceramics: I, Effect of Crack Size on Toughness,' J. Am. Ceram. Soc., 68 [11] 604-15 (1985) https://doi.org/10.1111/j.1151-2916.1985.tb16163.x