DOI QR코드

DOI QR Code

Simple and Rapid Evaluation System for Endosulfan Toxicity and Selection of Endosulfan Detoxifying Microorganism Based on Lumbricus rubellus

Lumbricus rubellus를 이용한 endosulfan의 간편, 신속 독성 평가 및 endosulfan 분해 미생물의 선별

  • Sohn Ho-Yong (Dept. of Food and Nutrition, Andong National University) ;
  • Kim Hong-Ju (Dept. of Food and Nutrition, Andong National University) ;
  • Kum Eun-Joo (Dept. of Food and Nutrition, Andong National University) ;
  • Lee Jung-Bok (The School of Bioresource Sciences, Andong National University) ;
  • Kwon Gi-Seok (The School of Bioresource Sciences, Andong National University)
  • 손호용 (안동대학교 식품영양학과) ;
  • 김홍주 (안동대학교 식품영양학과) ;
  • 금은주 (안동대학교 식품영양학과) ;
  • 이중복 (안동대학교 생명자원과학부) ;
  • 권기석 (안동대학교 생명자원과학부)
  • Published : 2006.02.01

Abstract

To compensate the problems of chemical assay in detoxification of recalcitrant and a practical approach in selection of bioremediation bacteria, a simple and rapid toxicity evaluation system was constructed based on Lumbricus rubellus. Long term-culture and specific equipment are not necessary, and semi-quantitative analysis of toxicity at sub-lethal concentration is possible by measuring of dose-dependent increased yellowish secreted compounds. When the toxicity of endosulfan, its metabolites and structurally related chemicals were measured for 24 h, the results were coincided with previous reports. Toxicity was found in endosulfan, endosulfan sulfate, aldrin, and dieldrin, respectively. Rapid and economic selection of endosulfan-detoxifying bacteria was possible using our system. Klebsiella pneumoniae KE-1, K. oxytoca KE-8 and Pseudomonas sp. KS-2P, reported endosulfan degrading bacteria, ameliorated the endosulfan toxicity, whereas E. coli, B. subtilis and other bacteria failed to protect the toxicity of endosulfan in L. rubellus. Our results suggest that the constructed system is useful to selection of microorganism as well as toxicity evaluation against toxic recalcitrants.

독성물질의 무독화 연구의 화학적 분석방법의 문제점을 보완하고, 난분해성 독성물질의 분해 미생물을 효율적으로 탐색하기 위해, 지렁이와 microplate를 이용한 빠르고 간편한 독성평가 시스템을 구축하였다. 본 방법은 지렁이의 사육이나 특수시설이 필요하지 않으며, 치사 및 무게감소가 현저하게 나타나지 않는 저농도, 단기간 처리시에도 신속하게 독성의 정량평가가 가능하다 실제 endosulfan 및 다양한 endosulfan 유도체, 구조적 유사체 등을 대상으로 독성 평가한 결과, endosulfan, endosulfan sulfate, aldrin 및 dieldrin 에서만 독성이 나타나 기존의 연구결과와 잘 일치하였다. 이를 이용하여 endosulfan분해 및 무독화 균주 선별을 시도한 결과, 기존 endosulfan분해 및 무독화 균주로 선별된 KE-1, KE-8, KS-2P균주 처리의 경우에는 지렁이의 독성이 거의 나타나지 않았으나, E. coli, B. subtilis, 및 YSU 균주들을 처리한 경우에는, 지렁이 사멸과 함께 심각한 독성이 나타났다. 따라서, 본 시스템은 독성물질의 독성평가뿐 아니라, 독성물질의 분해 및 무독화 미생물 선별에 매우 유용함을 확인하였다.

Keywords

References

  1. Ait-Aissa, S., P. Pandard, H. Magaud, A. P. Arrigo, E. Thybaud and J. M. Porcher. 2003. Evaluation of an in vitro hsp70 induction test for toxicity assessment of complex mixtures: comparison with chemical analyses and ecotoxicity tests. Ecotoxicol. Environ. Saf. 54, 92-104 https://doi.org/10.1016/S0147-6513(02)00026-X
  2. An, Y. J. 2005. Assessing soil ecotoxicity of methyl tert-butyl ether using earthworm bioassay; closed soil microcosm test for volatile organic compounds. Environ. Pollut. 134, 181-186 https://doi.org/10.1016/j.envpol.2004.08.012
  3. Awasthi, N., A. K. Singh, R. K. Jain, B. S. Khangarot and A. Kumar. 2003. Degradation and detoxification of endosulfan isomers by a defined co-culture of two Bacillus strains. Appl. Microbiol. Biotechnol. 62, 279-283 https://doi.org/10.1007/s00253-003-1241-7
  4. Boyd, D. R., N. D. Sharma and C. C. R. Allen. 2001. Aromatic dioxygenase: molecular biocatalysis and applications. Curr. Opin. Biotechnol. 12, 564-573 https://doi.org/10.1016/S0958-1669(01)00264-6
  5. Bundy, J. G., D. J. Spurgeon, C. Svendsen, P. K. Hankard, J. M., Weeks, D. Osborn, J. C. Lindon and J. K. Nicholson. 2004. Environmental metabonomics: applying combination biomarker analysis in earthworms at a metal contaminated site. Ecotoxicology 13, 797-806 https://doi.org/10.1007/s10646-003-4477-1
  6. Charrois, J. W., W. B. McGill and K. L. Froese. 2001. Acute ecotoxicity of creosote-contaminated soils to Eisenia fetida: a survival-based approach. Environ. Toxicol. Chem. 20, 2594-2603 https://doi.org/10.1897/1551-5028(2001)020<2594:AEOCCS>2.0.CO;2
  7. Conder J. M. and R. P. Lanno. 2000. Evaluation of surrogate measures of cadmium, lead, and zinc bioavailability to Eisenia fetida. Chemosphere 41, 1659-1668 https://doi.org/10.1016/S0045-6535(00)00045-X
  8. Gillis, P. L., D. G. Dixon, U. Borgmann and T. B. Reynoldson. 2004. Uptake and depuration of cadmium, nickel, and lead in laboratory-exposed Tubifex tubifex and corresponding changes in the concentration of a metallothionein-like protein. Environ. Toxicol. Chem. 23, 76-85 https://doi.org/10.1897/02-415
  9. Goebel, H., S. Gorbach, W. Knauf, R. H. Rimpau and H. Huttenbach. 1982. Properties, effect, residues and analytics of the insecticide endosulfan. Residue Rev. 83, 1-122
  10. Grdisa, M., M. Popovic and T. Hrzenjak. 2004. Stimulation of growth factor synthesis in skin wounds using tissue extract (G-90) from the earthworm Eissenia foetida. Cell Biochem. Funct. 22, 373-378 https://doi.org/10.1002/cbf.1121
  11. Jung, H., W. Park, J. Lee, J. W. Yoo, E. Y. Kim and H. J. Chae. 2005. Toxicity test of biodiesel and biodiesel-derived neopentyl polyol ester lubricant oil base using earthworm. Korean J. Biotechnol. Bioeng. 20, 84-87
  12. Kaur, I., R. P. Mathur, S. N. Tandon and P. Dureja. 1998. Persistence of endosulfan (technical) in water and soil. Environ. Tech. 19, 115-119 https://doi.org/10.1080/09593331908616663
  13. Kullman, S. W. and F. Matsumura. 1996. Metabolic pathways utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan. Appl. Environ. Microbiol. 62, 593-600
  14. Kwon, G.-S., H.-Y. Sohn, K-.S. Shin, E. Kim and B.-I. Seo. 2005. Biodegradation of the organochlorine insecticide, endosulfan, an the toxic metabolite, endosulfan sulfate, by Klebsiella oxytoca KE-8. Appl. Microbiol. Biotechnol. 67, 845-850 https://doi.org/10.1007/s00253-004-1879-9
  15. Kwon, G.-S., J.-E. Kim, T.-E. Kim, H.-Y. Sohn, S.-C. Koh, K.-S. Shin and D.-G. Kim. 2002. Klebsiella pneumoniae KE-1 degrades endosulfan without formation of the toxic metabolite, endosulfan sulfate. FEMS Miobiol. Lett. 215, 255-259 https://doi.org/10.1111/j.1574-6968.2002.tb11399.x
  16. Lee, S.-E., J.-S. Kim, I.-R. Kennedy, J.-W. Park, G.-S. Kwon, S.-C. Koh and J.-E. Kim. 2003. Biotransformation of an organochlorine insecticide, endosulfan, by Anabaena species. J. Agric. Food Chem. 51, 1336-1340 https://doi.org/10.1021/jf0257289
  17. Na, Y. E., H. S. Bang, K. K. Kang, M. S. Han and Y. J. Ahn. 2005. Assessment of the effects of some insecticides on mortality of earthworm (Eisenia fetida). Korean J. Environ. Agr. 24, 289-294 https://doi.org/10.5338/KJEA.2005.24.3.289
  18. Rajaguru, P., S. Suba, M. Palanivel. and K. Kalaiselvi. 2003. Genotoxicity of a polluted river system measured using the alkaline comet assay on fish and earthworm tissues. Environ. Mol. Mutagen. 41, 85-91 https://doi.org/10.1002/em.10134
  19. Ricketts, H. J., A. J. Morgan, D. J.. Spurgeon, P. Kille. 2004. Measurement of annetocin gene expression: a new reproductive biomarker in earthworm ecotoxicology. Ecotoxicol. Environ. Saf. 57, 4-10 https://doi.org/10.1016/j.ecoenv.2003.08.008
  20. Sethunathan, N., M. Megharaj, Z. L. Chen, B. D. Williams, G. Lewis and R. Naidu. 2004. Algal degradation of a known endocrine disrupting insecticide, a-endosulfan, and its metabolite, endosulfan sulfate, in liquid medium and soil. J. Agric. Food Chem. 52, 3030-3035 https://doi.org/10.1021/jf035173x
  21. Sohn, H.-Y., C.-S. Kwon, G.-S. Kwon, J.-B. Lee and E. Kim. 2004. Induction of oxidative stress by endosulfan and protective effect of lipid-soluble antioxidants against endosulfan-induced oxidative damage. Toxicol. Lett. 151, 357-365 https://doi.org/10.1016/j.toxlet.2004.03.004
  22. Suh, Y.-D. 2004. Biodegradation of the endosulfan by Sphingomonas wittichii RW1, J. Korea Soc. Environ. Administrat. 10, 287-294
  23. Sutherland, T. D., I. Horne, R. L. Harcourt, R. J. Russell and J. G. Oakeshott. 2002. Isolation and characterization of a Mycobacterium strain that metabolizes the insecticide endosulfan. J. Appl. Microbiol. 93, 380-389 https://doi.org/10.1046/j.1365-2672.2002.01728.x
  24. Sutherland, T. D., I. Horne, M. J. Lacey, R. L. Harcourt, R. J. Russell and J. G. Oakeshott. 2000. Enrichment of an endosulfan-degrading mixed bacterial culture. Appl. Environ. Microbiol. 66, 2822-2828 https://doi.org/10.1128/AEM.66.7.2822-2828.2000
  25. Sutherland, T. D., K. M. Weir, M. J. Lacey, I. Horne, R. J. Russell and J. G. Oakeshott. 2002. Enrichment of a microbial culture capable of degrading endosulphate, the toxic metabolite of endosulfan. J. Appl. Microbiol. 92, 541-548 https://doi.org/10.1046/j.1365-2672.2002.01559.x
  26. Svendsen, C., D. J. Spurgeon, P. K. Hankard and J. M. Weeks. 2004. A review of lysosomal membrane stability measured by neutral red retention: is it a workable earthworm biomarker? Ecotoxicol. Environ. Saf. 57, 20-29 https://doi.org/10.1016/j.ecoenv.2003.08.009

Cited by

  1. Spectrophotometric Determination of Bisphenol A by Complexation with Ferricyanide and Ferric chloride solution vol.17, pp.2, 2007, https://doi.org/10.5352/JLS.2007.17.2.266
  2. Investigation of the Bioconcentration Factor of Endosulfan for Rice from Soil vol.22, pp.1, 2018, https://doi.org/10.7585/kjps.2018.22.1.25