References
- Abe, K., F. Ohnishi, K. Yagi, T. Nakajima, T. Higuchi, M. Sano, M. Machida, R. I. Sarker and P. C. Maloney. 2002. Plasmid-Encoded asp operon confers a proton motive metabolic cycle catalyzed by an aspartate-alanine exchange reaction. J. Bacteriol. 184, 2906-2913 https://doi.org/10.1128/JB.184.11.2906-2913.2002
- Bodalo, A., J. Bastida, J. L. Gomez, E. Gomez, I. Alcaraz and M. L. Asanza. 1997. Stabilization studies of L-aminoacylase-producing Pseudomonas sp. BA2 immobilized in calcium alginate gel. Enzyme Microb. Tech. 21, 64-69 https://doi.org/10.1016/S0141-0229(96)00227-X
- Calik, G., H. Vural and T. H. Ozdamar. 1997. Bioprocess parameters and oxygen transfer effects in the growth of Pseudomonas dacunhae for L-alanine production. Chem. Eng. J. 65, 109-116 https://doi.org/10.1016/S1385-8947(96)03159-2
-
Fusee, M. C. and J. E. Weber. 1984. Immobilization by polyurethane of Pseudomonas dacunhae cells containing l-aspartate
${\beta}-decarboxylase$ activity and application to l-alanine production. Appl. Environ. Microbiol. 48, 694-698 - Fusee, M. C., W. E. Swann and G. J. Calton. 1981. Immobilization of Escherichia coli cells containing aspartase activity with polyurethane and its application for L-aspartic acid production. Appl. Environ. Microbiol. 42, 672-676
- Hols, P., M. Kleerebezem, A. N. Schanck, T. Ferain, J. Hugenholtz, J. Delcour and W. M. de Vos. 1999. Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering. Nat. Biotechnol. 17, 588-592 https://doi.org/10.1038/9902
- http://www.ncbi.nlm.nih.gov/genomes/static/eub_g.html
- Kengen, S. W. and A. J. M. Stams. 1994. Formation of L-alanine as a reduced end product in carbohydrate fermentation by the hyperthermophilic archaeon Pyrococcus furiosus. Arch. Microbiol. 161, 168-175 https://doi.org/10.1007/BF00276479
- Kobayashi, T., S. Higuchi, K. Kimura, T. Kudo and K. Horikoshi. 1995. Properties of glutamate dehydrogenase and its involvement in alanine production in alanine production in a hyperthermophilic archaeon, Thermococcus Profundus. J. Biochem. 120(3), 531-539
- Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685 https://doi.org/10.1038/227680a0
- Orlygsson, J., R. Anderson, and B. H. Svensson. 1995. Alanine as an end product during fermentation of monosaccharides by Clostridium strain P2. Anton. Leeuw. 68, 273-280 https://doi.org/10.1007/BF00874136
- Ravot, G., B. Ollivier, M.-L. Fardeau, B. K. Patel, K. T. Andrews, M. Magot and J.-L. Garcia. 1996. L-Alanine production from glucose fermentation by hyperthermophilic members of the domains Bacteria and Archaea: a remnant of an ancestral metabolism? Appl. Environ. Microbiol. 62, 2657-2659
- Sambrook, J. and D. W. Russell. 1989. Molecular Cloning: A Laboratory Manual. 2nd eds., Cold Spring Harbor Laboratory Press, New York, New York
-
Schaefer, T., K. B. Xavier, H. Santos and P. Schoenheit. 1994. Glucose fermentation to acetate and alanine in resting cell suspensions of Pyrococcus furiosus: proposal of a novel glycolytic pathway based on
$^{13}C$ labelling data and enzyme activities. FEMS Microbiol. Lett. 21, 107-114 -
Tate, S. S. and A. Meister. 1971. L-aspartate
${\beta}-decarboxylase;$ structure, catalytic activities, and allosteric regulation. Adv. Enzymol. Relat. Areas Mol. Biol. 35, 503-543 https://doi.org/10.1002/9780470122808.ch9 - Ward, D. E., S. W. Kengen, J. van der Oost and W. M. de Vos. 2000. Purification and characterization of the alanine aminotransferase from the hyperthermophilic archaeon Pyrococcus furiosus and its role in alanine production. J. Bacteriol. 182, 2559-2566 https://doi.org/10.1128/JB.182.9.2559-2566.2000
- 임번삼. 2003. 아미노산 발효공업. KISTI 기술동향분석보고서
- 임번삼. 2003. 아미노산 생산균주의 개량. KISTI 기술동향분석보고서
- 임번삼. 2004. 발효산업의 현황과 발전방안. KISTI 기술동향보고서