DOI QR코드

DOI QR Code

Impaired Spindle Checkpoint Response of Brca1-deficient Mouse Embryonic Fibroblasts (MEFs) to Nocodazole Treatment

Brca1 결손 세포주에서 nocodazole 처리에 의한 spindle checkpoint 활성화 연구

  • Kim Myoung-Ae (Medical Research Center for Cancer Molecular Therapy, College of Medicine, Dong-A University, Department of Biochemistry, College of Medicine, Dong-A University) ;
  • Kim Hyunju (Medical Research Center for Cancer Molecular Therapy, College of Medicine, Dong-A University, Department of Biochemistry, College of Medicine, Dong-A University) ;
  • Yun Jeanho (Medical Research Center for Cancer Molecular Therapy, College of Medicine, Dong-A University, Department of Biochemistry, College of Medicine, Dong-A University)
  • 김명애 (동아대학교 의과대학 생화학교실, 동아대학교 암분자치료연구센터) ;
  • 김현주 (동아대학교 의과대학 생화학교실, 동아대학교 암분자치료연구센터) ;
  • 윤진호 (동아대학교 의과대학 생화학교실, 동아대학교 암분자치료연구센터)
  • Published : 2006.02.01

Abstract

Genetic alternation of Brca1 predispose of breast and ovarian cancer. Brca1 plays critical role in cell cycle regulation following DNA damage. Previous studies revealed that Brca1 plays an important role in S phase and G2/M checkpoint regulation. However, whether Brca1 involves in spindle checkpoint is unclear. In this study, the role of Brca1 in cell cycle response following nocodazole, which is a reagent that depolymerizes microtubules and activates the spindle checkpoint, has been examined using wild type $p53^{-/-}\;and\;p53^{-/-}Brca1^{-/-}$ mouse embryonic fibroblasts (MEFs). While wild type and Brca1-proficient MEFs showed an acute mitotic arrest, Brca1-deficient MEFs failed to arrest at mitotic phase in response to nocodazole treatment. In double-thymidine block and nocodazole treatment experiment, a portion of $p53^{-/-}\;Brca1^{-/-}$ MEFs were clearly by-passed nocodazole induced mitotic arrest. Consistent with this, in morphologic analysis, $p53^{-/-}\;Brca1^{-/-}$ MEFs showed growing cell morphology after nocodazole treatment. Taken together, these results suggest that Brca1 protein is an important component for normal induction of spindlecheckpoint and impairment of Brca1 function could induce dysregulation of mitotic cell cycle that ultimately results in genomic instability.

항암유전자 Brca1의 변이는 유방암 및 난소암에 대한 감수성을 증가시키며, Brca1은 DNA손상신호후 세포주기 조절에 필수적인 역할을 한다. 연구결과, Brca1이 세포주기 S기와 G2/M 조절점에서 중요한 역할을 담당함이 밝혀졌다. 그러나, Brca1의 spindle checkpoint 관여여부는 알려져 있지 않다. 본 연구에서는 spindle checkpoint를 활성화시키는 nocodazole를 처리하여 야생형, $p53^{-/-}$ 그리고 $p53^{-/-}\;Brca1^{-/-}$ 세포주의 세포주기 변화를 조사하였다. 야생형과 $p53^{-/-}$ 세포주는 신속한 mitosis기 정지가 나타난 반면, $p53^{-/-}\;Brca1^{-/-}$ 세포주의 경우 모든 세포가 M기에서 정지하지 않았다. Double-thymidine block 기법에 의한 세포주기 동조화후 nocodazole 처리시에도 $p53^{-/-}\;Brca1^{-/-}$ 세포주에서는 일부세포가 M기 조절점을 통과하여 계속 G1기로 진행하였다. 형태학적 분석에서도 nocodazole 함유배지에서 계속 증식하는 세포형태가 관찰되었다. 이와 같은 결과들은 Brca1이 spindle checkpoint가 정상적으로 작동하는데 중요한 역할을 담당한다는 것을 의미하고 있다.

Keywords

References

  1. Brodie, S. G., Xu, X., Qiao, W., Li, W. M., Cao, L., and Deng, C. X. 2001. Multiple genetic changes are associated with mammary tumorigenesis in Brca1 conditional knockout mice. Oncogene 20, 7514-7523 https://doi.org/10.1038/sj.onc.1204929
  2. Chen, Y., Farmer, A. A., Chen, C. F., Jones, D. C., Chen, P. L., and Lee, W. H. 1996. BRCA1 is a 220-kDa nuclear phosphoprotein that is expressed and phosphorylated in a cell cycle-dependent manner. Cancer Res. 56, 3168-3172
  3. Cross, S. M., Sanchez, C. A., Morgan, C. A., Schimke, M. K., Ramel, S., Idzerda, R. L., Raskind, W. H., and Reid, B. J. 1995. A p53-dependent mouse spindle checkpoint. Science 267, 1353-1356 https://doi.org/10.1126/science.7871434
  4. Deng, C. X., and Brodie, S. G. 2000. Roles of BRCA1 and its interacting proteins. Bioassays 22, 728-737 https://doi.org/10.1002/1521-1878(200008)22:8<728::AID-BIES6>3.0.CO;2-B
  5. Di Leonardo, A., Khan, S. H., Linke, S. P., Greco, V., Seidita, G., and Wahl, G. M. 1997. DNA rereplication in the presence of mitotic spindle inhibitors in human and mouse fibroblasts lacking either p53 or pRb function. Cancer Res. 57, 1013-1019
  6. Gasco, M., Yulug, I. G., and Crook, T. 2003. TP53 mutations in familial breast cancer: functional aspects. Hum. Mutat. 21, 301-306 https://doi.org/10.1002/humu.10173
  7. Hartwell, L. 1992. Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell 71, 543-546 https://doi.org/10.1016/0092-8674(92)90586-2
  8. Jallepalli, P. V., and Lengauer, C. 2001. Chromosome segregation and cancer: cutting through the mystery. Nat. Rev. Cancer 1, 109-117 https://doi.org/10.1038/35101065
  9. Khan, S. H., and Wahl, G. M. 1998. p53 and pRb prevent rereplication in response to microtubule inhibitors by mediating a reversible G1 arrest. Cancer Res. 58, 396-401
  10. Lanni, J. S., and Jacks, T. 1998. Characterization of the p53-dependent postmitotic checkpoint following spindle disruption. Mol. Cell. Biol. 18, 1055-1064 https://doi.org/10.1128/MCB.18.2.1055
  11. Lengauer, C., Kinzler, K. W., and Vogelstein, B. 1998. Genetic instabilities in human cancers. Nature 396, 643-649 https://doi.org/10.1038/25292
  12. Nigg, E. A. 2001. Mitotic kinases as regulators of cell division and its checkpoints. Nat. Rev. Mol. Cell. Biol. 2, 21-32 https://doi.org/10.1038/35048096
  13. Ruffner, H., and Verma, I. M. 1997. BRCA1 is a cell cycle-regulated nuclear phosphoprotein. Proc. Natl. Acad. Sci. U. S. A. 94, 7138-7143
  14. Sablina AA, Agapova LS, ChumakovPM, and Kopnin BP. 1999. p53 does not control the spindle assembly cell cycle checkpoint but mediates G1 arrest in response to disruption of microtubule system. Cell. Biol. Int. 23, 323-334 https://doi.org/10.1006/cbir.1999.0362
  15. Ting, N. S., and Lee, W. H. 2004. The DNA double-strand break response pathway: becoming more BRCAish than ever. DNA Repair (Amst), 3, 935-944 https://doi.org/10.1016/j.dnarep.2004.03.026
  16. Vaughn, J. P., Davis, P. L., Jarboe, M. D., Huper, G., Evans, A. C., Wiseman, R. W., Berchuck, A., Iglehart, J. D., Futreal, P. A., and Marks, J. R. 1996. BRCA1 expression isinduced before DNA synthesis in both normal and tumor-derived breast cells. Cell Growth Differ. 7, 711-715
  17. Vogel C, Kienitz A, Hofmann I, Muller R, and Bastians H. 2004. Crosstalk of the mitotic spindle assembly checkpoint with p53 to prevent polyploidy. Oncogene 23, 6845-6853 https://doi.org/10.1038/sj.onc.1207860
  18. Weaver, Z., Montagna, C., Xu, X., Howard, T., Gadina, M., Brodie, S. G., Deng, C. X., and Ried, T. 2002. Mammary tumors in mice conditionally mutant for Brca1 exhibit gross genomic instability and centrosome amplification yet display a recurring distribution of genomic imbalances that is similar to human breast cancer. Oncogene 21, 5097-5107 https://doi.org/10.1038/sj.onc.1205636
  19. Wang, R. H., Yu, H., and Deng, C. X. 2004. A requirement for breast-cancer-associated gene 1 (BRCA1) in the spindle checkpoint. Proc. Natl. Acad. Sci. U. S. A. 101, 17108-17113
  20. Xu, X., Qiao, W., Linke, S. P., Cao, L., Li, W. M., Furth, P. A., Harris, C. C., and Deng, C. X. 2001. Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis. Nat. Genet. 28, 266-271 https://doi.org/10.1038/90108
  21. Xu, X., Weaver, Z., Linke, S. P., Li, C., Gotay, J., Wang, X. W., Harris, C. C., Ried, T., and Deng, C. X. 1999. Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol. Cell. 3, 389-395 https://doi.org/10.1016/S1097-2765(00)80466-9
  22. Yun, J. Involvement of Brca1 in DNA interstrand crosslink repair through homologous recombination-independent process. J. Life Sci. 15, 542-547 https://doi.org/10.5352/JLS.2005.15.4.542
  23. Yun, J., Zhong, Q., Kwak, J. Y., and Lee, W. H. 2005. Hypersensitivity of Brca1-deficient MEF to the DNA interstrand crosslinking agent mitomycin C is associated with defect in homologous recombination repair and aberrant S-phase arrest. Oncogene 24, 4009-4016 https://doi.org/10.1038/sj.onc.1208575
  24. Zheng, L., Li, S., Boyer, T. G., and Lee, W. H. 2000. Lessons learned from BRCA1 and BRCA2. Oncogene 19, 6159-6175 https://doi.org/10.1038/sj.onc.1203968
  25. Zheng, L., Pan, H., Li, S., Flesken-Nikitin, A., Chen, P. L., Boyer, T. G., and Lee, W. H. 2000. Sequence-specific transcriptional corepressor function for BRCA1 through a novel zinc finger protein, ZBRK1. Mol. Cell. 6, 757-768 https://doi.org/10.1016/S1097-2765(00)00075-7