References
- Brodie, S. G., Xu, X., Qiao, W., Li, W. M., Cao, L., and Deng, C. X. 2001. Multiple genetic changes are associated with mammary tumorigenesis in Brca1 conditional knockout mice. Oncogene 20, 7514-7523 https://doi.org/10.1038/sj.onc.1204929
- Chen, Y., Farmer, A. A., Chen, C. F., Jones, D. C., Chen, P. L., and Lee, W. H. 1996. BRCA1 is a 220-kDa nuclear phosphoprotein that is expressed and phosphorylated in a cell cycle-dependent manner. Cancer Res. 56, 3168-3172
- Cross, S. M., Sanchez, C. A., Morgan, C. A., Schimke, M. K., Ramel, S., Idzerda, R. L., Raskind, W. H., and Reid, B. J. 1995. A p53-dependent mouse spindle checkpoint. Science 267, 1353-1356 https://doi.org/10.1126/science.7871434
- Deng, C. X., and Brodie, S. G. 2000. Roles of BRCA1 and its interacting proteins. Bioassays 22, 728-737 https://doi.org/10.1002/1521-1878(200008)22:8<728::AID-BIES6>3.0.CO;2-B
- Di Leonardo, A., Khan, S. H., Linke, S. P., Greco, V., Seidita, G., and Wahl, G. M. 1997. DNA rereplication in the presence of mitotic spindle inhibitors in human and mouse fibroblasts lacking either p53 or pRb function. Cancer Res. 57, 1013-1019
- Gasco, M., Yulug, I. G., and Crook, T. 2003. TP53 mutations in familial breast cancer: functional aspects. Hum. Mutat. 21, 301-306 https://doi.org/10.1002/humu.10173
- Hartwell, L. 1992. Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell 71, 543-546 https://doi.org/10.1016/0092-8674(92)90586-2
- Jallepalli, P. V., and Lengauer, C. 2001. Chromosome segregation and cancer: cutting through the mystery. Nat. Rev. Cancer 1, 109-117 https://doi.org/10.1038/35101065
- Khan, S. H., and Wahl, G. M. 1998. p53 and pRb prevent rereplication in response to microtubule inhibitors by mediating a reversible G1 arrest. Cancer Res. 58, 396-401
- Lanni, J. S., and Jacks, T. 1998. Characterization of the p53-dependent postmitotic checkpoint following spindle disruption. Mol. Cell. Biol. 18, 1055-1064 https://doi.org/10.1128/MCB.18.2.1055
- Lengauer, C., Kinzler, K. W., and Vogelstein, B. 1998. Genetic instabilities in human cancers. Nature 396, 643-649 https://doi.org/10.1038/25292
- Nigg, E. A. 2001. Mitotic kinases as regulators of cell division and its checkpoints. Nat. Rev. Mol. Cell. Biol. 2, 21-32 https://doi.org/10.1038/35048096
- Ruffner, H., and Verma, I. M. 1997. BRCA1 is a cell cycle-regulated nuclear phosphoprotein. Proc. Natl. Acad. Sci. U. S. A. 94, 7138-7143
- Sablina AA, Agapova LS, ChumakovPM, and Kopnin BP. 1999. p53 does not control the spindle assembly cell cycle checkpoint but mediates G1 arrest in response to disruption of microtubule system. Cell. Biol. Int. 23, 323-334 https://doi.org/10.1006/cbir.1999.0362
- Ting, N. S., and Lee, W. H. 2004. The DNA double-strand break response pathway: becoming more BRCAish than ever. DNA Repair (Amst), 3, 935-944 https://doi.org/10.1016/j.dnarep.2004.03.026
- Vaughn, J. P., Davis, P. L., Jarboe, M. D., Huper, G., Evans, A. C., Wiseman, R. W., Berchuck, A., Iglehart, J. D., Futreal, P. A., and Marks, J. R. 1996. BRCA1 expression isinduced before DNA synthesis in both normal and tumor-derived breast cells. Cell Growth Differ. 7, 711-715
- Vogel C, Kienitz A, Hofmann I, Muller R, and Bastians H. 2004. Crosstalk of the mitotic spindle assembly checkpoint with p53 to prevent polyploidy. Oncogene 23, 6845-6853 https://doi.org/10.1038/sj.onc.1207860
- Weaver, Z., Montagna, C., Xu, X., Howard, T., Gadina, M., Brodie, S. G., Deng, C. X., and Ried, T. 2002. Mammary tumors in mice conditionally mutant for Brca1 exhibit gross genomic instability and centrosome amplification yet display a recurring distribution of genomic imbalances that is similar to human breast cancer. Oncogene 21, 5097-5107 https://doi.org/10.1038/sj.onc.1205636
- Wang, R. H., Yu, H., and Deng, C. X. 2004. A requirement for breast-cancer-associated gene 1 (BRCA1) in the spindle checkpoint. Proc. Natl. Acad. Sci. U. S. A. 101, 17108-17113
- Xu, X., Qiao, W., Linke, S. P., Cao, L., Li, W. M., Furth, P. A., Harris, C. C., and Deng, C. X. 2001. Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis. Nat. Genet. 28, 266-271 https://doi.org/10.1038/90108
- Xu, X., Weaver, Z., Linke, S. P., Li, C., Gotay, J., Wang, X. W., Harris, C. C., Ried, T., and Deng, C. X. 1999. Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol. Cell. 3, 389-395 https://doi.org/10.1016/S1097-2765(00)80466-9
- Yun, J. Involvement of Brca1 in DNA interstrand crosslink repair through homologous recombination-independent process. J. Life Sci. 15, 542-547 https://doi.org/10.5352/JLS.2005.15.4.542
- Yun, J., Zhong, Q., Kwak, J. Y., and Lee, W. H. 2005. Hypersensitivity of Brca1-deficient MEF to the DNA interstrand crosslinking agent mitomycin C is associated with defect in homologous recombination repair and aberrant S-phase arrest. Oncogene 24, 4009-4016 https://doi.org/10.1038/sj.onc.1208575
- Zheng, L., Li, S., Boyer, T. G., and Lee, W. H. 2000. Lessons learned from BRCA1 and BRCA2. Oncogene 19, 6159-6175 https://doi.org/10.1038/sj.onc.1203968
- Zheng, L., Pan, H., Li, S., Flesken-Nikitin, A., Chen, P. L., Boyer, T. G., and Lee, W. H. 2000. Sequence-specific transcriptional corepressor function for BRCA1 through a novel zinc finger protein, ZBRK1. Mol. Cell. 6, 757-768 https://doi.org/10.1016/S1097-2765(00)00075-7