Ginsenoside $R_e$ Increases Fertile and Asthenozoospermic Infertile Human Sperm Motility by Induction of Nitric Oxide Synthase

  • Zhang Hong (Department of Medical Physics, Institute of Modern Physics, The Chinese Academy of Sciences) ;
  • Zhou Qing-Ming (Department of Medical Physics, Institute of Modern Physics, The Chinese Academy of Sciences) ;
  • Li Xiao-Da (Department of Medical Physics, Institute of Modern Physics, The Chinese Academy of Sciences) ;
  • Xie Yi (Department of Medical Physics, Institute of Modern Physics, The Chinese Academy of Sciences) ;
  • Duan Xin (Department of Medical Physics, Institute of Modern Physics, The Chinese Academy of Sciences) ;
  • Min Feng-Ling (Department of Medical Physics, Institute of Modern Physics, The Chinese Academy of Sciences) ;
  • Liu Bing (Department of Medical Physics, Institute of Modern Physics, The Chinese Academy of Sciences) ;
  • Yuan Zhi-Gang (Department of Medical Physics, Institute of Modern Physics, The Chinese Academy of Sciences)
  • 발행 : 2006.02.01

초록

We investigated the effects of Ginsenoside $R_e$ on human sperm motility in fertile and asthenozoospermic infertile individuals in vitro and the mechanism by which the Ginsenosides play their roles. The semen samples were obtained from 10 fertile volunteers and 10 asthenozoospermic infertile patients. Spermatozoa were separated by Percoll and incubated with 0, 1, 10 or $100\;{\mu}M$ of Ginsenoside $R_e$. Total sperm motility and progressive motility were measured by computer-aided sperm analyzer (CASA). Nitric oxide synthase (NOS) activity was determined by the $^{3}H$-arginine to $^{3}H$-citrulline conversion assay, and the NOS protein was examined by the Western blot analysis. The production of sperm nitric oxide (NO) was detected using the Griess reaction. The results showed that Ginsenoside $R_e$ significantly enhanced both fertile and infertile sperm motility, NOS activity and NO production in a concentration-dependent manner. Sodium nitroprusside (SNP, 100 nM), a NO donor, mimicked the effects of Ginsenoside $R_e$. And pretreatment with a NOS inhibitor $N^{w}$-Nitro-L-arginine methyl ester (L-NAME, $100\;{\mu}M$) or a NO scavenger N-Acetyl-L-cysteine (LNAC, 1 mM) completely blocked the effects of Ginsenoside $R_e$. Data suggested that Ginsenoside $R_e$ is beneficial to sperm motility, and that induction of NOS to increase NO production may be involved in this benefit.

키워드

참고문헌

  1. Aitken, R. J. and Clarkson, J. S., Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. J. Reprod. Fertil., 81, 459-469 (1987) https://doi.org/10.1530/jrf.0.0810459
  2. Alvarez, J. G., Touchstone, J. C., Blasco, L., and Storey, B. T., Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. Superoxide dismutase as major enzyme protectant against oxygen toxicity. J. Androl., 8, 338-348 (1987) https://doi.org/10.1002/j.1939-4640.1987.tb00973.x
  3. Bai, C. X., Sunami, A., Namiki, T., Sawanobori, T., and Furukawa, T., Electrophysiological effects of ginseng and ginsenoside Re in guinea pig ventricular myocytes. Eur. J. Pharmacol., 476, 35-44 (2003) https://doi.org/10.1016/S0014-2999(03)02174-5
  4. Bai, C. X., Takahashi, K., Masumiya, H., Sawanobori, T., and Furukawa, T., Nitric oxide-dependent modulation of the delayed rectifier $K^+$ current and the L-type $Ca^{2+}$ current by ginsenoside $R_e$, an ingredient of Panax ginseng, in guineapig cardiomyocytes. Br. J. Pharmacol., 142, 567-575 (2004) https://doi.org/10.1038/sj.bjp.0705814
  5. Balercia, G., Moretti, S., Vignini, A., Magagnini, M., Manter, F., Boscaro, M., Ricciardo-Lamonica, G., and Mazzanti, L., Role of nitric oxide concentrations on human sperm motility. J. Androl., 25, 245-249 (2004) https://doi.org/10.1002/j.1939-4640.2004.tb02784.x
  6. Burnett, A. L., Ricker, D. D., Chamness, S. L., Maguire, M. P., Crone, J. K., Bredt, D. S., Snyder, S. H., and Chang, d oatical A of S T. S., Localization of nitric oxide synthase in the reproductive organs of the male rat. Biol. Reprod., 52, 1-7 (1995) https://doi.org/10.1095/biolreprod52.1.1
  7. Cai, X. and Marik, J. J., Improving penetrating capacity of spermatozoa with poor motility by addition of caffeine at coincubation with zona free hamster ova. Fertil. Steril., 51, 719-721 (1989) https://doi.org/10.1016/S0015-0282(16)60627-1
  8. Chen, J. C., Chen, L. D., Tsauer, W., Tsai, C. C., Chen, B. C., and Chen, Y. J., Effects of Ginsenoside Rb2 and Rc on inferior human sperm motility in vitro. Am. J. Chin. Med., 29, 155-160 (2001) https://doi.org/10.1142/S0192415X01000174
  9. Chen, J. C., Xu, M. X., Chen, L. D., Chen, Y. N., and Chiu, T. H., Effect of panax notoginseng saponins on sperm motility and progression in vitro. Phytomedicin, 5, 289-292 (1998) https://doi.org/10.1016/S0944-7113(98)80068-8
  10. Chen, J. C., Xu, M. X., Chen, L.D., Chen, Y. N., and Chiu, T. H., Effect of panax notoginseng extracts on inferior sperm motility in vitro. Am. J. Chin. Med., 27, 123-128 (1999) https://doi.org/10.1142/S0192415X9900015X
  11. Chen, X., Cardiovascular protection by ginsenosides and their nitric oxide releasing action. Clin. Exp. Pharmacol. Physiol., 23, 728-732 (1996) https://doi.org/10.1111/j.1440-1681.1996.tb01767.x
  12. Chu, G. X. and Chen, X., Anti-lipid peroxidation and protection of ginsenosides against ischemia and reperfusion injuries in rats. Acta Pharmacol. Sin., 11, 119-123 (1990)
  13. Clancy, R. M., Leszczynska-Piziak, J., and Abramson, S. B., Nitric oxide, an endothelial cell relaxation factor, inhibits neutrophil superoxide anion production via a direct action on the NADPH oxidase. J. Clin. Invest., 90, 1116-1121 (1992) https://doi.org/10.1172/JCI115929
  14. Ehren, I., Adolfsson, J., and Wiklund, N. P., Nitric oxide synthase activity in the human urogenital tract. Urol. Res., 22, 287-290 (1994) https://doi.org/10.1007/BF00297196
  15. Forstermann, U., Closs, E. I., Pollock, J. S., Nakane, M., Schwarz, P., Gath, I., and Kleinert, H., Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension, 23, 1121-1131 (1994) https://doi.org/10.1161/01.HYP.23.6.1121
  16. Gillis, C. N., Panax ginseng pharmacology: a nitric oxide link? Biochem. Pharmacol., 54, 1-8 (1997) https://doi.org/10.1016/S0006-2952(97)00193-7
  17. Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S., and Tannenbaum, S. R., Analysis of nitrate, nitrite, and [$^{15}N$] nitrate in biological fluids. Anal. Biochem., 126, 131-138 (1982) https://doi.org/10.1016/0003-2697(82)90118-X
  18. Hellstrom, W. J. G., Bell, M., Wang, R., and Sikka, S. C., Effect of sodium nitroprusside on sperm motility, viability and lipid peroxidation. Fertil. Steril., 61, 1117-1122 (1994) https://doi.org/10.1016/S0015-0282(16)56766-1
  19. Herrero, M. B., de Lamirande, E., and Gagnon, C., Nitric oxide regulates human sperm capacitation and protein-tyrosine phosphorylation in vitro. Biol. Reprod., 61, 575-581 (1999) https://doi.org/10.1095/biolreprod61.3.575
  20. Herrero, M. B., Goin, J. C., Boquet, M., Canteros, M.G., Franchi, A. M., Perez Martinez, S., Polak, J. M., Viggiano, J. M., and Gimeno, M. A., The nitric oxide synthase of mouse spermatozoa. FEBS Lett., 411, 39-42 (1997) https://doi.org/10.1016/S0014-5793(97)00570-X
  21. Iwasaki, A. and Gagnon, C., Formation of reactive oxygen species in spermatozoa of infertile patients. Fertil. Steril., 57, 409-416 (1992) https://doi.org/10.1016/S0015-0282(16)54855-9
  22. Jin, Z. Q., The action of ginsenoside $R_e$ on inotropy and chronotropy of isolated atria prepared from guinea pigs. Planta Med., 62, 314-316 (1996) https://doi.org/10.1055/s-2006-957891
  23. Jin, Z. Q. and Liu, C. M., Effect of ginsenoside $R_e$ on the electrophysiological activity of the heart. Planta Med., 60, 192-193 (1994) https://doi.org/10.1055/s-2006-959452
  24. Jone, R., Mann, T., and Sherins, R., Adverse effects of peroxidized lipid on human spermatozoa. Proc. R. Soc. Lond., 201, 413-417 (1978)
  25. Kang, S. Y., Schini-Kerth, V. B., and Kim, N. D., Ginsenosides of the protopanaxatriol group cause endothelium-dependent relaxation in the rat aorta. Life Sci., 56, 1577-1586 (1995) https://doi.org/10.1016/0024-3205(95)00124-O
  26. Keskes-Ammar, L., Feki-Chakroun, N., Rebai, T., Sahnoun, Z., Ghozzi, H., Hammami, S., Zghal, K., Fki, H., Damak, J., and Bahloul, A., Sperm oxidative stress and the effect of an oral vitamin E and selenium supplement on semen quality in infertile men. Arch. Androl., 49, 83-94 (2003) https://doi.org/10.1080/713828100
  27. Kim, N. D., Kim, E. M., Kang, K. W., Cho, M. K., Choi, S. Y., and Kim, S. G., Ginsenoside $R_g3$ inhibits phenylephrine-induced vascular contraction through induction of nitric oxide synthase. Br. J. Pharmacol., 140, 661-670 (2003) https://doi.org/10.1038/sj.bjp.0705490
  28. Kon, Y., Namiki, Y., and Endoh, D., Expression and distribution of inducible nitric oxide synthase in mouse testis. Jpn. J. Vet. Res., 50, 115-123 (2002)
  29. Lewis, S. E., Donnelly, E. T., Sterling, E. S., Kennedy, M. S., Thompson, W., and Chakravarthy, U., Nitric oxide synthase and nitrite production in human spermatozoa: evidence that endogenous nitric oxide is beneficial to sperm motility. Mol. Hum. Reprod., 2, 873-878 (1996) https://doi.org/10.1093/molehr/2.11.873
  30. Li, Z., Niwa, Y., Sakamoto, S., Shono, M., Chen, X., and Nakaya, Y., Induction of inducible nitric oxide synthase by ginsenosides in cultured porcine endothelial cells. Life Sci., 67, 2983–2989 (2000) https://doi.org/10.1016/S0024-3205(00)00880-8
  31. Marletta, M. A., Nitric oxide synthase structure and mechanism. J. Biol. Chem., 268, 12231-12234 (1993)
  32. McCall, T. B., Boughton-Smith, N. K., Palmer, R. M., Whittle, B. J., and Moncada, S., Synthesis of nitric oxide from L-arginine by neutrophils. Release and interaction with superoxide anion. Biochem. J., 261, 293-296 (1989) https://doi.org/10.1042/bj2610293
  33. Moncada, S, Palmer, R. M., and Higgs, E. A., Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev., 43, 109-142 (1991)
  34. O'Bryan, M. K., Zini, A., Cheng, C. Y., and Schlegel, P. N., Human sperm endothelial nitric oxide synthase expression: correlation with sperm motility. Fertil. Steril., 70, 1143-1147 (1998) https://doi.org/10.1016/S0015-0282(98)00382-3
  35. Rees, J. M., Ford, W. C., and Hull, M. G., Effect of caffeine and of pentoxifylline on the motility and metabolism of human spermatozoa. J. Reprod. Fertil., 90, 147-156 (1990) https://doi.org/10.1530/jrf.0.0900147
  36. Revelli, A., Soldati, G., Costamagna, C., Pellerey, O., Aldieri, E., Massobrio, M., Bosia, A., and Ghigo, D., Follicular fluid proteins stimulate nitric oxide (NO) synthesis in human sperm: a possible role for NO in acrosomal reaction. J. Cell Physiol., 178, 85-92 (1999) https://doi.org/10.1002/(SICI)1097-4652(199901)178:1<85::AID-JCP11>3.0.CO;2-Y
  37. Scott, G. I., Colligan, P. B., Ren, B. H., and Ren, J., Ginsenosides $Rb_1$ and $R_e$ decrease cardiac contraction in adult rat ventricular myocytes: role of nitric oxide. Br. J. Pharmacol., 134, 1159-1165 (2001) https://doi.org/10.1038/sj.bjp.0704377
  38. Sengoku, K., Tamate, K., Yoshida, T., Takaoka, Y., Miyamoto, T., and Ishikaw, M., Effects of low concentrations of nitric oxide on the zona pellucida binding ability of human spermatozoa. Fertil. Steril., 69, 522-527 (1998) https://doi.org/10.1016/S0015-0282(97)00537-2
  39. Suzuki, M., Kurabayashi, T., Yamamoto, Y., Fujita, K., and Tanaka, K., Effects of antioxidant treatment in oligozoospermic and asthenozoospermic men. J. Reprod. Med., 48, 707-712 (2003)
  40. Tomlinson, M. J., East, S. J., Barratt, C. L., Bolton, C. L., and Cooke, I. D., Possible role of reactive nitrogen intermediates in leukocyte-mediated sperm dysfunction. Am. J. Reprod. Immunol., 27, 89-92 (1992) https://doi.org/10.1111/j.1600-0897.1992.tb00730.x
  41. Weinberg, J. B., Doty, E., Bonaventura, J., and Haney, A. F., Nitric oxide inhibition of human sperm motility. Fertil. Steril., 64, 408-413 (1995) https://doi.org/10.1016/S0015-0282(16)57743-7
  42. Yeoman, R. R., Jones, W. D., and Rizk, B. M., Evidence for nitric oxide regulation of hamster sperm hyperactivation. J. Androl., 19, 58-64 (1998)
  43. Yunes, R., Doncel, G. F., and Acosta, A. A., Incidence of spermtail tyrosine phosphorylation and hyperactivated motility in normozoospermic and asthenozoospermic human sperm samples. Biocell, 27, 29-36 (2003)
  44. Zhang, H. and Zheng, R. L., Possible role of nitric oxide on fertile and asthenozoospermic infertile human sperm functions. Free Radic. Res., 25, 347-354 (1996) https://doi.org/10.3109/10715769609149057
  45. Zheng, R. L. and Zhang, H., Effects of ferulic acid on fertile and asthenozoospermic infertile human sperm motility, viability, lipid peroxidation, and cyclic nucleotides. Free Radic. Biol. Med., 22, 581-586 (1997) https://doi.org/10.1016/S0891-5849(96)00272-9
  46. Zini, A., de Lamirande, E., and Gagnon, C., Low levels of nitric oxide promote human sperm capacitation in vitro. J. Androl., 16, 424-430 (1995)