Close Relationship Between SARS-Coronavirus and Group 2 Coronavirus

  • Kim, Ok-Ju (Division of Life Sciences Chungbuk National University) ;
  • Lee, Dong-Hun (Division of Life Sciences Chungbuk National University, Research Institute for Biotechnology, Chungbuk National University) ;
  • Lee, Chan-Hee (Division of Life Sciences Chungbuk National University, Research Institute for Biotechnology, Chungbuk National University)
  • Published : 2006.02.01

Abstract

The sudden appearance and potential lethality of severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) in humans has resulted in a focusing of new attention on the determination of both its origins and evolution. The relationship existing between SARS-CoV and other groups of coronaviruses was determined via analyses of phylogenetic trees and comparative genomic analyses of the coronavirus genes: polymerase (Orflab), spike (S), envelope (E), membrane (M) and nucleocapsid (N). Although the coronaviruses are traditionally classed into 3 groups, with SARS-CoV forming a $4^{th}$ group, the phylogenetic position and origins of SARS-CoV remain a matter of some controversy. Thus, we conducted extensive phylogeneitc analyses of the genes common to all coronavirus groups, using the Neighbor-joining, Maximum-likelihood, and Bayesian methods. Our data evidenced largely identical topology for all of the obtained phylogenetic trees, thus supporting the hypothesis that the relationship existing between SARS-CoV and group 2 coronavirus is a monophyletic one. Additional comparative genomic studies, including sequence similarity and protein secondary structure analyses, suggested that SARS-Co V may bear a closer relationship with group 2 than with the other coronavirus groups. Although our data strongly suggest that group 2 coronaviruses are most closely related with SARS-CoV, further and more detailed analyses may provide us with an increased amount of information regarding the origins and evolution of the coronaviruses, most notably SARS-CoV.

Keywords

References

  1. Drosten, C., S. Gunther, W. Preiser, S. van der Werf, H.R. Brodt, S. Becker, H. Rabenau, M. Panning, L. Kolesnikova, R.A. Fouchier, A. Berger, A.M. Burguiere, J. Cinatl, M. Eickmann, N. Escriou, K. Grywna, S. Kramme, J.C. Manuguerra, S. Muller, V. Rickerts, M. Sturmer, S. Vieth, H.D. Klenk, A.D. Osterhaus, H. Schmitz, and H.W. Doerr. 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1967-1976 https://doi.org/10.1056/NEJMoa030747
  2. Gibbs, A.J., M.J. Gibbs, and J.S. Armstrong. 2004. The phylogeny of SARS coronavirus. Arch. Virol. 149, 621-624 https://doi.org/10.1007/s00705-003-0244-0
  3. Guan, Y., B.J. Zheng, Y.Q. He, X.L. Liu, Z.X. Zhuang, C.L. Cheung, S.W. Luo, P.H. Li, L.J. Zhang, Y.J. Guan, K.M. Butt, K.L. Wong, K.W. Chan, W. Lim, K.F. Shortridge, K.Y. Yuen, J.S. Peiris, and L.L. Poon. 2003. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302, 276-278 https://doi.org/10.1126/science.1087139
  4. Ksiazek, T.G., D. Erdman, C.S. Goldsmith, S.R. Zaki, T. Peret, S. Emery, S. Tong, C. Urbani, J.A. Comer, W. Lim, P.E. Rollin, S.F. Dowell, A.E. Ling, C.D. Humphrey, W.J. Shieh, J. Guarner, C.D. Paddock, P. Rota, B. Fields, J. DeRisi, J.Y. Yang, N. Cox, J.M. Hughes, J.W. LeDuc, W.J. Bellini, and L.J. Anderson; SARS Working Group. 2003. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1953-1966 https://doi.org/10.1056/NEJMoa030781
  5. Lau SK, P.C. Woo, K.S. Li, Y. Huang, H.W. Tsoi, B.H. Wong, S.S. Wong, S.Y. Leung, K.H. Chan, and K.Y. Yuen. 2005.Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl. Acad. Sci. USA. 102, 14040-14045
  6. Lio, P. and N. Goldman. 2004. Phylogenomics and bioinformatics of SARS-CoV. Trends Microbiol. 12, 106-111 https://doi.org/10.1016/j.tim.2004.01.005
  7. Marra, M.A., S.J. Jones, C.R. Astell, R.A. Holt, A. Brooks-Wilson, Y.S. Butterfield, J. Khattra, J.K. Asano, S.A. Barber, S.Y. Chan, A. Cloutier, S.M. Coughlin, D. Freeman, N. Girn, O.L. Griffith, S.R. Leach, M. Mayo, H. McDonald, S.B. Montgomery, P.K. Pandoh et al. 2003. The Genome sequence of the SARS-associated coronavirus. Science 300, 1399-1404 https://doi.org/10.1126/science.1085953
  8. Peiris, J.S., S.T. Lai, L.L. Poon, Y. Guan, L.Y. Yam, W. Lim, J. Nicholls, W.K. Yee, W.W. Yan, M.T. Cheung, V.C. Cheng, K.H. Chan, D.N. Tsang, R.W. Yung, T.K. Ng, and K.Y. Yuen; SARS study group. 2003. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361, 1319-1325 https://doi.org/10.1016/S0140-6736(03)13077-2
  9. Poon LL, D.K. Chu, K.H. Chan, O.K. Wong, T.M. Ellis, Y.H. Leung, S.K. Lau, P.C. Woo, K.Y. Suen, K.Y. Yuen, Y. Guan, and J.S. Peiris. 2005. Identification of a novel coronavirus in bats. J Virol. 79, 2001-2009 https://doi.org/10.1128/JVI.79.4.2001-2009.2005
  10. Rest, J.S. and D.P. Mindell. 2003. SARS associated coronavirus has a recombinant polymerase and coronaviruses have a history of host-shifting. Infect. Genet. Evol. 3, 219-225 https://doi.org/10.1016/j.meegid.2003.08.001
  11. Rota, P.A., M.S. Oberste, S.S. Monroe, W.A. Nix, R. Campagnoli, J.P. Icenogle, S. Penaranda, B. Bankamp, K. Maher, M.H. Chen, S. Tong, A. Tamin, L. Lowe, M. Frace, J.L. DeRisi, Q. Chen, D. Wang, D.D. Erdman, T.C. Peret, C. Burns, T.G. Ksiazek, P.E. Rollin, A. Sanchez, S. Liffick, B. Holloway, J. Limor, K. McCaustland, M. Olsen-Rasmussen, R. Fouchier, S. Gunther, A.D. Osterhaus, C. Drosten, M.A. Pallansch, L.J. Anderson, and W.J. Bellini. 2003. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300, 1394-1399 https://doi.org/10.1126/science.1085952
  12. Snijder, E.J., P.J. Bredenbeek, J.C. Dobbe, V. Thiel, J. Ziebuhr, L.L. Poon, Y. Guan, M. Rozanov, W.J. Spaan, and A.E. Gorbalenya. 2003. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 331, 991-1004 https://doi.org/10.1016/S0022-2836(03)00865-9
  13. Stanhope, M.J., J.R. Brown, and H. Amrine-Madsen. 2004. Evidence from the evolutionary analysis of nucleotide sequences for a recombinant history of SARS-CoV. Infect. Genet. Evol. 4, 15-19 https://doi.org/10.1016/j.meegid.2003.10.001
  14. Stavrinides, J. and D.S. Guttman. 2004. Mosaic evolution of the severe acute respiratory syndrome coronavirus. J. Virol. 78, 76-82 https://doi.org/10.1128/JVI.78.1.76-82.2004
  15. Thiel, V., K.A. Ivanov, A. Putics, T. Hertzig, B. Schelle, S. Bayer, B. Weissbrich, E.J. Snijder, H. Rabenau, H.W. Doerr, A.E. Gorbalenya, and J. Ziebuhr. 2003 Mechanisms and enzymes involved in SARS coronavirus genome expression. J. Gen. Virol. 84, 2305-2015 https://doi.org/10.1099/vir.0.19424-0
  16. Yap, Y.L., X.W. Zhang, and A. Danchin. 2003. Relationship of SARS-CoV to other pathogenic RNA viruses explored by tetranucleotide usage profiling. BMC Bioinformatics 4, 43 https://doi.org/10.1186/1471-2105-4-43
  17. Zeng, F.Y., C.W. Chan, M.N. han, J.D. Chen, K.Y. Chow, C.C. Hon, K.H. Hui, J. Li, V.Y. Li, C.Y. Wang, P.Y. Wang, Y. Guan, B. Zheng, L.L. Poon, K.H. Chan, K.Y. Yuen, J.S. Peiris, and F.C. Leung. 2003. The complete genome sequence of severe acute respiratory syndrome coronavirus strain HKU-39849 (HK-39). Exp. Biol. Med (Maywood). 228, 866-873 https://doi.org/10.1177/15353702-0322807-13
  18. Zhu, G. and H.W. Chen. 2004. Monophyletic relationship between severe acute respiratory syndrome coronavirus and group 2 coronaviruses. J. Infect. Dis. 189, 1676-1678 https://doi.org/10.1086/382892