ppGpp: Stringent Response and Survival

  • Jain Vikas (Molecular Biophysics Unit, Indian Institute of Science) ;
  • Kumar Manish (Molecular Biophysics Unit, Indian Institute of Science) ;
  • Chatterji Dipankar (Molecular Biophysics Unit, Indian Institute of Science)
  • 발행 : 2006.02.01

초록

Adaptation to any undesirable change in the environment dictates the survivability of many microorganisms, with such changes generating a quick and suitable response, which guides the physiology of bacteria. During nutritional deprivation, bacteria show a stringent response, as characterized by the accumulation of (p)ppGpp, resulting in the repression of stable RNA species, such as rRNA and tRNA, with a concomitant change in colony morphology. However, genes involved in amino acid biosynthesis become over-expressed to help bacteria survive under such conditions. The survivability of pathogenic bacteria inside a host cell also depends upon the stringent response demonstrated. Therefore, an understanding of the physiology of stringent conditions becomes very interesting in regulation of the growth and persistence of such invading pathogens.

키워드

참고문헌

  1. Aravind, L. and E.V. Koonin. 1998. The HD domain defines a new superfamily of metal-dependent phosphohydrolases. Trends Biochem Sci. 23, 469-472 https://doi.org/10.1016/S0968-0004(98)01293-6
  2. Artsimovitch, I., V. Patlan, S. Sekine, M.N. Vassylyeva, T. Hosaka, K. Ochi, S. Yokoyama and D.G. Vassylyev. 2004. Structural basis for transcription regulation by alarmone ppGpp. Cell 117, 299-310 https://doi.org/10.1016/S0092-8674(04)00401-5
  3. Avarbock, A., D. Avarbock, J.S. Teh, M. Buckstein, Z.M. Wang and H. Rubin. 2005. Functional regulation of the opposing (p)ppGpp synthetase/hydrolase activities of $Rel_{Mtb}$ from Mycobacterium tuberculosis. Biochemistry 44, 9913-9923 https://doi.org/10.1021/bi0505316
  4. Avarbock, D., A. Avarbock and H. Rubin. 2000. Differential regulation of opposing $Rel_{Mtb}$ activities by the aminoacylation state of a tRNA.ribosome.mRNA.$Rel_{Mtb}$ complex. Biochemistry 39, 11640-11648 https://doi.org/10.1021/bi001256k
  5. Avarbock, D., J. Salem, L.S. Li, Z.M. Wang and H. Rubin. 1999. Cloning and characterization of a bifunctional RelA/SpoT homologue from Mycobacterium tuberculosis. Gene 233, 261-269 https://doi.org/10.1016/S0378-1119(99)00114-6
  6. Bashyam, M.D., D. Kaushal, S.K. Dasgupta and A.K. Tyagi. 1996. A study of mycobacterial transcriptional apparatus: identification of novel features in promoter elements. J. Bacteriol. 178, 4847-4853 https://doi.org/10.1128/jb.178.16.4847-4853.1996
  7. Baysse, C., M. Cullinane, V. Denervaud, E. Burrowes, J.M. Dow, J.P. Morrissey, L. Tam, J.T. Trevors and F. O'Gara. 2005. Modulation of quorum sensing in Pseudomonas aeruginosa through alteration of membrane properties. Microbiology 151, 2529-2542 https://doi.org/10.1099/mic.0.28185-0
  8. Calderon-Flores, A., G. Du Pont, A. Huerta-Saquero, H. Merchant-Larios, L. Servin-Gonzalez and S. Duran. 2005. The stringent response is required for amino acid and nitrate utilization, nod factor regulation, nodulation, and nitrogen fixation in Rhizobium etli. J. Bacteriol. 187, 5075-5083 https://doi.org/10.1128/JB.187.15.5075-5083.2005
  9. Cashel, M. 1974. Preparation of guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp) from Escherichia coli ribosomes. Anal. Biochem. 57, 100-107 https://doi.org/10.1016/0003-2697(74)90056-6
  10. Cashel, M. 1975. Regulation of bacterial ppGpp and pppGpp. Annu. Rev. Microbiol. 29, 301-318 https://doi.org/10.1146/annurev.mi.29.100175.001505
  11. Cashel, M., D.R. Gentry, V.J. Hernandez and D. Vinella. 1996. The stringent response, p.1458-1496. In F.C. Neidhardt, R. Curtiss III, J.L. Ingraham, E.C.C. Lin, K.B. Low, B. Magasanik, W.S. Reznikoff, M. Riley, M. Schaechter and H.E. Umbarger (eds.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. 2nd ed. ASM Press, Washington, D.C
  12. Cellini, A., G.L. Scoarughi, P. Poggiali, I. Santino, R. Sessa, P. Donini and C. Cimmino. 2004. Stringent control in the archaeal genus Sulfolobus. Res. Microbiol. 155, 98-104 https://doi.org/10.1016/j.resmic.2003.11.006
  13. Chakraburtty, R. and M. Bibb. 1997. The ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2) plays a conditional role in antibiotic production and morphological differentiation. J. Bacteriol. 179, 5854-5861 https://doi.org/10.1128/jb.179.18.5854-5861.1997
  14. Chatterji, D., N. Fujita and A. Ishihama. 1998. The mediator for stringent control, ppGpp, binds to the beta-subunit of Escherichia coli RNA polymerase. Genes Cells 3, 279- 287 https://doi.org/10.1046/j.1365-2443.1998.00190.x
  15. Chatterji, D. and A.K. Ojha. 2001. Revisiting the stringent response, ppGpp and starvation signaling. Curr. Opin. Microbiol. 4, 160-165 https://doi.org/10.1016/S1369-5274(00)00182-X
  16. Crawford, E.W., Jr. and L.J. Shimkets. 2000. The stringent response in Myxococcus xanthus is regulated by SocE and the CsgA C-signaling protein. Genes Dev. 14, 483-492
  17. Dahl, J.L., K. Arora, H.I. Boshoff, D.C. Whiteford, S.A. Pacheco, O.J. Walsh, D. Lau-Bonilla, W.B. Davis and A.G. Garza. 2005. The relA homolog of Mycobacterium smegmatis affects cell appearance, viability, and gene expression. J. Bacteriol. 187, 2439-2447 https://doi.org/10.1128/JB.187.7.2439-2447.2005
  18. Dahl, J.L., C.N. Kraus, H.I. Boshoff, B. Doan, K. Foley, D. Avarbock, G. Kaplan, V. Mizrahi, H. Rubin and C.E. Barry, 3rd. 2003. The role of $Rel_{Mtb}$-mediated adaptation to stationary phase in long-term persistence of Mycobacterium tuberculosis in mice. Proc. Natl. Acad. Sci. USA 100, 10026-10031
  19. Erickson, D.L., J.L. Lines, E.C. Pesci, V. Venturi and D.G. Storey. 2004. Pseudomonas aeruginosa relA contributes to virulence in Drosophila melanogaster. Infect. Immun. 72, 5638-5645 https://doi.org/10.1128/IAI.72.10.5638-5645.2004
  20. Fisher, S.D., A.D. Reger, A. Baum and S.A. Hill. 2005. RelA alone appears essential for (p)ppGpp production when Neisseria gonorrhoeae encounters nutritional stress. FEMS Microbiol. Lett. 248, 1-8 https://doi.org/10.1016/j.femsle.2005.05.014
  21. Garza, A.G., B.Z. Harris, B.M. Greenberg and M. Singer. 2000. Control of asgE expression during growth and development of Myxococcus xanthus. J. Bacteriol. 182, 6622-6629 https://doi.org/10.1128/JB.182.23.6622-6629.2000
  22. Gaynor, E.C., D.H. Wells, J.K. MacKichan and S. Falkow. 2005. The Campylobacter jejuni stringent response controls specific stress survival and virulence-associated phenotypes. Mol. Microbiol. 56, 8-27 https://doi.org/10.1111/j.1365-2958.2005.04525.x
  23. Gentry, D., H. Xiao, R. Burgess and M. Cashel. 1991. The omega subunit of Escherichia coli K-12 RNA polymerase is not required for stringent RNA control in vivo. J. Bacteriol. 173, 3901-3903 https://doi.org/10.1128/jb.173.12.3901-3903.1991
  24. Gentry, D.R. and R.R. Burgess. 1989. rpoZ, encoding the omega subunit of Escherichia coli RNA polymerase, is in the same operon as spoT. J. Bacteriol. 171, 1271-1277 https://doi.org/10.1128/jb.171.3.1271-1277.1989
  25. Gropp, M., Y. Strausz, M. Gross and G. Glaser. 2001. Regulation of Escherichia coli RelA requires oligomerization of the C-terminal domain. J. Bacteriol. 183, 570-579 https://doi.org/10.1128/JB.183.2.570-579.2001
  26. Gupta, S., S.B. Pandit, N. Srinivasan and D. Chatterji. 2002. Proteomics analysis of carbon-starved Mycobacterium smegmatis: induction of Dps-like protein. Protein Eng. 15, 503-512 https://doi.org/10.1093/protein/15.6.503
  27. Hammer, B.K. and M.S. Swanson. 1999. Co-ordination of Legionella pneumophila virulence with entry into stationary phase by ppGpp. Mol. Microbiol. 33, 721-731 https://doi.org/10.1046/j.1365-2958.1999.01519.x
  28. Haralalka, S., S. Nandi and R.K. Bhadra. 2003. Mutation in the relA gene of Vibrio cholerae affects in vitro and in vivo expression of virulence factors. J. Bacteriol. 185, 4672-4682 https://doi.org/10.1128/JB.185.16.4672-4682.2003
  29. Harris, B.Z., D. Kaiser and M. Singer. 1998. The guanosine nucleotide (p)ppGpp initiates development and A-factor production in Myxococcus xanthus. Genes Dev. 12, 1022-1035 https://doi.org/10.1101/gad.12.7.1022
  30. Haseltine, W.A. and R. Block. 1973. Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon- specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. Proc. Natl. Acad. Sci. USA 70, 1564-1568
  31. Hogg, T., U. Mechold, H. Malke, M. Cashel and R. Hilgenfeld. 2004. Conformational antagonism between opposing active sites in a bifunctional RelA/SpoT homolog modulates (p)ppGpp metabolism during the stringent response. Cell 117, 57-68 https://doi.org/10.1016/S0092-8674(04)00260-0
  32. Hoyt, S. and G.H. Jones. 1999. relA is required for actinomycin production in Streptomyces antibioticus. J. Bacteriol. 181, 3824-3829
  33. Igarashi, K., N. Fujita and A. Ishihama. 1989. Promoter selectivity of Escherichia coli RNA polymerase: omega factor is responsible for the ppGpp sensitivity. Nucleic Acids Res. 17, 8755-8765 https://doi.org/10.1093/nar/17.21.8755
  34. Inaoka, T., K. Takahashi, M. Ohnishi-Kameyama, M. Yoshida and K. Ochi. 2003. Guanine nucleotides guanosine 5'-diphosphate 3'-diphosphate and GTP co-operatively regulate the production of an antibiotic bacilysin in Bacillus subtilis. J. Biol. Chem. 278, 2169-2176 https://doi.org/10.1074/jbc.M208722200
  35. Jain, V., S. Sujatha, A.K. Ojha and D. Chatterji. 2005. Identification and characterization of rel promoter element of Mycobacterium tuberculosis. Gene 351, 149-157 https://doi.org/10.1016/j.gene.2005.03.038
  36. Jin, W., H.K. Kim, J.Y. Kim, S.G. Kang, S.H. Lee and K.J. Lee. 2004. Cephamycin C production is regulated by relA and rsh genes in Streptomyces clavuligerus ATCC27064. J. Biotechnol. 114, 81-87 https://doi.org/10.1016/j.jbiotec.2004.06.010
  37. Jishage, M., K. Kvint, V. Shingler and T. Nystrom. 2002. Regulation of sigma factor competition by the alarmone ppGpp. Genes Dev. 16, 1260-1270 https://doi.org/10.1101/gad.227902
  38. Johnson, G.S., C.R. Adler, J.J. Collins and D. Court. 1979. Role of the spoT gene product and manganese ion in the metabolism of guanosine 5'-diphosphate 3'-diphosphate in Escherichia coli. J. Biol. Chem. 254, 5483-5487
  39. Kvint, K., A. Farewell and T. Nystrom. 2000. RpoS-dependent promoters require guanosine tetraphosphate for induction even in the presence of high levels of sigma(s). J. Biol. Chem. 275, 14795-14798 https://doi.org/10.1074/jbc.C000128200
  40. Manabe, Y.C. and W.R. Bishai. 2000. Latent Mycobacterium tuberculosis-persistence, patience, and winning by waiting. Nat. Med. 6, 1327-1329 https://doi.org/10.1038/82139
  41. Martinez-Costa, O.H., M.A. Fernandez-Moreno and F. Malpartida. 1998. The relA/spoT-homologous gene in Streptomyces coelicolor encodes both ribosome-dependent (p)ppGpp-synthesizing and -degrading activities. J. Bacteriol. 180, 4123-4132
  42. Mathew, R., A.K. Ojha, A. Karande and D. Chatterji. 2004. Deletion of the rel gene in Mycobacterium smegmatis reduces its staionary phase survival without altering the cell-surface associated properties. Curr. Sci. 86, 149-153
  43. Mayuri, G. Bagchi, T.K. Das and J.S. Tyagi. 2002. Molecular analysis of the dormancy response in Mycobacterium smegmatis: expression analysis of genes encoding the DevR-DevS two-component system, Rv3134c and chaperone alpha-crystallin homologues. FEMS Microbiol. Lett. 211, 231-237
  44. Mechold, U., M. Cashel, K. Steiner, D. Gentry and H. Malke. 1996. Functional analysis of a relA/spoT gene homolog from Streptococcus equisimilis. J. Bacteriol. 178, 1401-1411 https://doi.org/10.1128/jb.178.5.1401-1411.1996
  45. Mechold, U., H. Murphy, L. Brown and M. Cashel. 2002. Intramolecular regulation of the opposing (p)ppGpp catalytic activities of Rel(Seq), the Rel/Spo enzyme from Streptococcus equisimilis. J. Bacteriol. 184, 2878-2888 https://doi.org/10.1128/JB.184.11.2878-2888.2002
  46. Mittenhuber, G. 2001. Comparative genomics and evolution of genes encoding bacterial (p)ppGpp synthetases/hydrolases (the Rel, RelA and SpoT proteins). J. Mol. Microbiol. Biotechnol. 3, 585-600
  47. Moris, M., K. Braeken, E. Schoeters, C. Verreth, S. Beullens, J. Vanderleyden and J. Michiels. 2005. Effective symbiosis between Rhizobium etli and Phaseolus vulgaris requires the alarmone ppGpp. J. Bacteriol. 187, 5460-5469 https://doi.org/10.1128/JB.187.15.5460-5469.2005
  48. Mukherjee, R., M. Gomez, N. Jayaraman, I. Smith and D. Chatterji. 2005. Hyperglycosylation of glycopeptidolipid of Mycobacterium smegmatis under nutrient starvation: structural studies. Microbiology 151, 2385-2392 https://doi.org/10.1099/mic.0.27908-0
  49. Mulder, M.A., H. Zappe and L.M. Steyn. 1997. Mycobacterial promoters. Tuber. Lung Dis. 78, 211-223 https://doi.org/10.1016/S0962-8479(97)90001-0
  50. Ojha, A.K., T.K. Mukherjee and D. Chatterji. 2000. High intracellular level of guanosine tetraphosphate in Mycobacterium smegmatis changes the morphology of the bacterium. Infect. Immun. 68, 4084-4091 https://doi.org/10.1128/IAI.68.7.4084-4091.2000
  51. Parrish, N.M., J.D. Dick and W.R. Bishai. 1998. Mechanisms of latency in Mycobacterium tuberculosis. Trends. Microbiol. 6, 107-112 https://doi.org/10.1016/S0966-842X(98)01216-5
  52. Paul, B.J., M.M. Barker, W. Ross, D.A. Schneider, C. Webb, J.W. Foster and R.L. Gourse. 2004. DksA: a critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP. Cell 118, 311-322 https://doi.org/10.1016/j.cell.2004.07.009
  53. Paul, B.J., M.B. Berkmen and R.L. Gourse. 2005. DksA potentiates direct activation of amino acid promoters by ppGpp. Proc. Natl. Acad. Sci. USA 102, 7823-7828
  54. Perederina, A., V. Svetlov, M.N. Vassylyeva, T.H. Tahirov, S. Yokoyama, I. Artsimovitch and D.G. Vassylyev. 2004. Regulation through the secondary channel-structural framework for ppGpp-DksA synergism during transcription. Cell 118, 297-309 https://doi.org/10.1016/j.cell.2004.06.030
  55. Pizarro-Cerda, J. and K. Tedin. 2004. The bacterial signal molecule, ppGpp, regulates Salmonella virulence gene expression. Mol. Microbiol. 52, 1827-1844 https://doi.org/10.1111/j.1365-2958.2004.04122.x
  56. Primm, T.P., S.J. Andersen, V. Mizrahi, D. Avarbock, H. Rubin and C.E. Barry, 3rd. 2000. The stringent response of Mycobacterium tuberculosis is required for long-term survival. J. Bacteriol. 182, 4889-4898 https://doi.org/10.1128/JB.182.17.4889-4898.2000
  57. Reddy, P.S., A. Raghavan and D. Chatterji. 1995. Evidence for a ppGpp-binding site on Escherichia coli RNA polymerase: proximity relationship with the rifampicin-binding domain. Mol. Microbiol. 15, 255-265 https://doi.org/10.1111/j.1365-2958.1995.tb02240.x
  58. Reyrat, J.M. and D. Kahn. 2001. Mycobacterium smegmatis: an absurd model for tuberculosis? Trends. Microbiol. 9, 472-474
  59. Scoarughi, G.L., C. Cimmino and P. Donini. 1999. Helicobacter pylori: a eubacterium lacking the stringent response. J. Bacteriol. 181, 552-555
  60. Song, M., H.J. Kim, E.Y. Kim, M. Shin, H.C. Lee, Y. Hong, J.H. Rhee, H. Yoon, S. Ryu, S. Lim and H.E. Choy. 2004. ppGpp-dependent stationary phase induction of genes on Salmonella pathogenicity island 1. J. Biol. Chem. 279, 34183-34190 https://doi.org/10.1074/jbc.M313491200
  61. Sun, J., A. Hesketh and M. Bibb. 2001. Functional analysis of relA and rshA, two relA/spoT homologues of Streptomyces coelicolor A3(2). J. Bacteriol. 183, 3488-3498 https://doi.org/10.1128/JB.183.11.3488-3498.2001
  62. Svitil, A.L., M. Cashel and J.W. Zyskind. 1993. Guanosine tetraphosphate inhibits protein synthesis in vivo. A possible protective mechanism for starvation stress in Escherichia coli. J. Biol. Chem. 268, 2307-2311
  63. Takahashi, K., K. Kasai and K. Ochi. 2004. Identification of the bacterial alarmone guanosine 5'-diphosphate 3'-diphosphate (ppGpp) in plants. Proc. Natl. Acad. Sci. USA. 101, 4320-4324
  64. Taylor, C.M., M. Beresford, H.A. Epton, D.C. Sigee, G. Shama, P.W. Andrew and I.S. Roberts. 2002. Listeria monocytogenes relA and hpt mutants are impaired in surface- attached growth and virulence. J. Bacteriol. 184, 621-628 https://doi.org/10.1128/JB.184.3.621-628.2002
  65. Toulokhonov, II, I. Shulgina and V.J. Hernandez. 2001. Binding of the transcription effector ppGpp to Escherichia coli RNA polymerase is allosteric, modular, and occurs near the N terminus of the beta'-subunit. J. Biol. Chem. 276, 1220-1225 https://doi.org/10.1074/jbc.M007184200
  66. van Delden, C., R. Comte and A.M. Bally. 2001. Stringent response activates quorum sensing and modulates cell density- dependent gene expression in Pseudomonas aeruginosa. J. Bacteriol. 183, 5376-5384 https://doi.org/10.1128/JB.183.18.5376-5384.2001
  67. van der Biezen, E.A., J. Sun, M.J. Coleman, M.J. Bibb and J.D. Jones. 2000. Arabidopsis RelA/SpoT homologs implicate (p)ppGpp in plant signaling. Proc. Natl. Acad. Sci. USA 97, 3747-3752
  68. Vrentas, C.E., T. Gaal, W. Ross, R.H. Ebright and R.L. Gourse. 2005. Response of RNA polymerase to ppGpp: requirement for the omega subunit and relief of this requirement by DksA. Genes. Dev. 19, 2378-2387 https://doi.org/10.1101/gad.1340305
  69. Wells, D.H. and S.R. Long. 2002. The Sinorhizobium meliloti stringent response affects multiple aspects of symbiosis. Mol Microbiol. 43, 1115-1127 https://doi.org/10.1046/j.1365-2958.2002.02826.x
  70. Wendrich, T.M., G. Blaha, D.N. Wilson, M.A. Marahiel and K.H. Nierhaus. 2002. Dissection of the mechanism for the stringent factor RelA. Mol. Cell 10, 779-788 https://doi.org/10.1016/S1097-2765(02)00656-1
  71. Xiao, H., M. Kalman, K. Ikehara, S. Zemel, G. Glaser and M. Cashel. 1991. Residual guanosine 3',5'-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J. Biol. Chem. 266, 5980-5990
  72. Zhang, G., E.A. Campbell, L. Minakhin, C. Richter, K. Severinov and S.A. Darst. 1999. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution. Cell 98, 811-824 https://doi.org/10.1016/S0092-8674(00)81515-9