DOI QR코드

DOI QR Code

북극해 스발바드 군도 피오르드에서 일어난 홀로세의 빙해양 퇴적작용과 고기후적 의미

Holocene Glaciomarine Sedimentation and Its Paleoclimatic Implication on the Svalbard Fjord in the Arctic Sea

  • 윤호일 (한국해양연구원 부설 극지연구소) ;
  • 김예동 (한국해양연구원 부설 극지연구소) ;
  • 유규철 (한국해양연구원 부설 극지연구소) ;
  • 이재일 (한국해양연구원 부설 극지연구소) ;
  • 남승일 (한국지질자원연구원)
  • 발행 : 2006.03.31

초록

Analyses of sedimentological and geochemical parameters from two radiocarbon-dated sediment cores (JM98-845-PC and JM98-818-PC) retrieved from the central part of Isfjorden, Svalbard, in the Arctic Sea, reveal detailed paleoclimatic and paleoceanographic histories over the last 15,000 radiocarbon years. The overconsolidated diamicton at the base of core JM98-845-PC is supposed to be a basal till deposited beneath pounding glacier that had advanced during the LGM (Last Glacial Maximum). Deglaciation of the fjord commenced after the glacial maximum, marked by the deposition of interlaminated sand and mud in the ice-proximal zone by subglacial meltwater discharge, and prevailed between 13,700 and 10,800 yr B.P. with enriched-terrigenous organic materials. A return to colder conditions occurred at around 10,800 yr B.P. with a drop in TOC content, which is probably coincident with the Younger Dryas event in the North Atlantic region. At this time, an abrupt decrease of TOC content as well as an increase in C/N ratio suggests enhanced terrigenous input due to the glacial readvance. A climatic optimum is recognized between 8,395 and 2,442 yr B.P., coinciding with 'a mid-Holocene climatic optimum' in Northern Hemisphere sites (e.g., the Laurentide Ice sheet). During this time, as the sea ice receded from the fjord, enhanced primary productivity occurred in open marine conditions, resulting in the deposition of organic-enriched pebbly mud with evidence of TOC maxima and C/N ratio minima in sediments. Fast ice also disappeared from the coast, providing the maximum of IRD (ice-rafted debris) input. Around 2,442 yr B.p. (the onset of Neoglacial), pebbly mud, characterized by a decrease in TOC content, reflects the formation of more extensive sea ice and fast ice, which might cause decreased primary productivity in the surface water, as evidenced by a decrease in TOC content. Our results provide evidence of climatic change on the Svalbard fjords that helps to refine the existence and timing of late Pleistocene and Holocene millennial-scale climatic events in the Northern Hemisphere.

키워드

참고문헌

  1. Anderson, J.B., C.F. Brake, E. Domack, N. Myers, and R. Wright. 1983. Development of a polar glacial-marine sedimentation model from Antarctic Quaternary deposits and glaciological information. p. 233-264. In: Glacial Marine Sedimentation. ed. by B.F. Molnia. Plenum, New York.
  2. Anderson, J.B., D.S. Kennedy, M.J. Smith, and E.W. Domack. 1991. Sedimentary facies associated with Antarctica’s floating ice masses. p. 1-25. In: Glacial Marine Sedimentation, Paleoclimatic Significance, 261. Boulder, Colorado. ed. by J.B. Anderson and G.M. Ashley. Geological Society of America Special Paper.
  3. Coster, F. 1925. Quaternary geology of the region around the Skaedtjorna, an Arctic lake. Holocene, 1, 209-218. https://doi.org/10.1177/095968369100100303
  4. Domack, E.W., A. Leventer, R. Dunbar, F. Taylor, S. Brachfeld, C. Sjunneskog, and ODP Leg 178 Scientific Party. 2001. Chronology of the Palmer Deep site, Antarctic Peninsula: a Holocene paleoenvironmental reference for the circum-Antarctic. Holocene, 11, 1-9. https://doi.org/10.1191/095968301673881493
  5. Dowdeswell, J.A., G.S. Hamilton, and J.O. Hagen. 1991. The duration of the active phase on surge-type glaciers: Contrasts between Svalbard and other regions. J. Claciol., 37, 388-400.
  6. Dowdeswell, J.A., R.J. Whittington, A.E. Jennings, J.T. Andrews, A. Mackensen, and P. Marienfeld. 2000. An origin for laminated glacimarine sediments through seaice build-up and suppressed iceberg rafting. Sedimentology, 47, 557-576. https://doi.org/10.1046/j.1365-3091.2000.00306.x
  7. Dreimanis, A. 1988. Tills: their genetic terminology and classification. p. 17-83. In: Genetic Classification of Glacigenic Deposits. ed. by R.P. Goldthwait and C.L. Matsch. Balkema, Rotterdam.
  8. Eyles, N. and M.B. Lagoe. 1990. Sedimentation patterns and facies geometries on a temperate glacier-influence continental shelf: The Yakataga Formation, Middleton Island, Alaska. p. 363-386. In: Glaciomarine Environments: Processes and Sediments. ed. by J.A. Dowdeswell and J.D. Scourse. Geological Society of London, Special Publication 53.
  9. Eyles, N., C.H. Eyles, and A.D. Miall. 1983. Lithofacies types and vertical profile model; an alternative approach to the description and environmental interpretation of glacial diamict and diamictic sequences. Sedimentology, 30, 393-410. https://doi.org/10.1111/j.1365-3091.1983.tb00679.x
  10. Forwick, M. and T.O. Vorren. in prep. Late Weichselian and Holocene marine sedimentation in the Isfjorden area.
  11. Haga, O. 1978. Till deposits in dead ice from a glacier advance in Van Mijenfjorden. Ph.D. Thesis, Univ. Oslo.
  12. Hagen, J.O., O. Liestol, E. Roland, and T. Jorgensen. 1993. Glaciers Atlas of Svalbard and Jan Mayan. Norsk Polarinstitutt Meddelelser 129. Norweigian Polar Institute, Oslo.
  13. Hald, M. and S. Korsun. 1997. Distribution of modern Arctic benthic foraminifera from fjords of Svalbard. J. Foramin. Res., 27, 101-122. https://doi.org/10.2113/gsjfr.27.2.101
  14. Hald, M. and T. Dalhlgren. 2001. Late Holocene paleoceanography in Van Mijenfjorden, Svalbard. Polar Res., 20, 23-35. https://doi.org/10.1111/j.1751-8369.2001.tb00036.x
  15. Hambrey, M.J., M.R. Bennett, J.A. Dowdeswell, N.F. Glasser, and D. Huddart. 1999. Debris entrainment and transfer in polythermal valley glaciers. J. Glaciol., 45, 69-86. https://doi.org/10.1017/S0022143000003051
  16. Hambrey, M.J., W.U. Ehrmann, and B. Larsen. 1991. Cenozoic glacial record of the Prydz Bay continental shelf, East Antarctica. p. 77-131. In: Proc. Ocean Drilling Program, Scientific Results, 119. ed. by J. Barron and B. Larsen.
  17. Hjelle, A. 1993. The geology of Svalbard. Norsk Polarinstitutt, Oslo. 163 p.
  18. Hogbom, B. 1991. Bidrag till Isfjordenmradets kvaraergeologi. (On the Quaternary geology of the Isfjorden area). Geol. Foren. Stockholm Forh., 33, 32-57.
  19. Imbrie, J. and K.P. Imbrie. 1986. Ice ages: Solving the Mystery. Harvard Univ. Press. Cambridge, Massachusetts. 224 p.
  20. Jiskoot, H., T. Murray, and P. Boyle. 2000. Controls on the distribution of surge-type glaciers in Svalbard. J. Glaciol., 46, 412-422. https://doi.org/10.3189/172756500781833115
  21. Lawson, D.E. 1981. Distinguishing characteristics of diamictons at the margin of the Matanuska Glacier, Alaska. Annals Glaciol., 2, 78-84. https://doi.org/10.3189/172756481794352379
  22. Leventer, A., E.W. Domack, S.E. Ishman, S. Brachfeld, C.E. McClennen, and P. Manley. 1996. Productivity cycles of 200-300 years in the Antarctic Peninsula region: Understanding linkages among the sun, atmosphere, oceans, sea ice, and biota. Geol. Soc. Amer. Bull., 108, 1626-1644. https://doi.org/10.1130/0016-7606(1996)108<1626:PCOYIT>2.3.CO;2
  23. Liestol, O. 1969. Glacier surges in West Spitsbergen. Can. J. Earth Sci., 6, 895-898. https://doi.org/10.1139/e69-092
  24. Mangerud, J. and S. Gulliksen. 1975. Apparent radiocarbon ages of recent marine shells from Norway, Spitsbergen, and Arctic Canada. Quatern. Sci. Rev., 5, 263-273. https://doi.org/10.1016/0033-5894(75)90028-9
  25. Matthias, F. 2003. Marine-Geological cruise to Spitsbergen fjords. University of Tromso, Cruise Report.
  26. Moncrieff, A.C.M. and M.J. Hambrey. 1990. Marginalmarine glacial sedimentation in the late Precambrian succession of East Greenland. p. 387-410. In: Glacial Environments: Processes and Sediments. ed. by J.A. Dowdeswell and J.D. Scourse. Special Publication of Geological Society 53.
  27. Punning, J.-M., L. Troitsky, and R. Rajamae. 1976. The genesis and age of the Quaternary deposits in the eastern part of Van Mijenfjorden, West Spitsbergen. Geol. Foren. Forh., 98, 343-347. https://doi.org/10.1080/11035897609454394
  28. Rowan, D.E., T.L. Pewe, and R.H. Pewe. 1982. Holocene glacial geology of the Svea lowland, Spitsbergen, Svalbard. Geogr. Ann., 644, 35-51.
  29. Shevenell, A., E.W. Domack, and G.M. Kernan. 1996. Record of Holocene paleoclimate change along the Antarctic Peninsula: evidence from glacial marine sediments, Lallemand Fjord. Pap. Proc. Roy. Soc. Tasmania, 130(2), 55-64.
  30. Skardhamar, J. 1998. Circulation in Van Mijenfjorden, an Arctic Fjord. Thesis, Department of Geophysics, Univ. Bergen.
  31. Vinje, T. 1985. The physical environment, the western Barents Sea. Drift, composition, morphology and distribution of the sea ice fields in the Barents Sea. Nor. Norsk Polarinstitutt Skr. 179c, 26. Norweigian Polar Institute, Oslo.
  32. Wadhams, P. 1981. The ice cover in the Greenland and Norweigian seas. Rev. Geophys. Space Phys., 19, 345-393. https://doi.org/10.1029/RG019i003p00345
  33. Yoon, H.I., B.-Y. Park, Y. Kim, and C.Y. Kang. 2002. Glaciomarine sedimentation and its paleoclimatic implications on the Antarctic Peninsula shelf over the last 15000 years. Palaeogeogr., Palaeoclim., Palaeoecol., 185, 235-254. https://doi.org/10.1016/S0031-0182(02)00280-8

피인용 문헌

  1. List of Korean Names for the Vascular Plants in Spitsbergen Island, in the Arctic Region vol.34, pp.1, 2012, https://doi.org/10.4217/OPR.2012.34.1.101