
1 177

컴포넌트 인식을 위한 유즈케이스와 클래스의 연관과

전사적 소프트웨어개발에서의 적용*

임 좌 상**

Relating Use Cases and Classes to Identify Components

and its Experience for Enterprise Software Development*

Joasang Lim**

Abstract

Since their first inception a few decades ago, software components have received much attention mainly due to

their alleged benefits of quality and productivity improvement. Despite this, it is yet to be agreed upon what and how

components should be designed. This paper aims to bridge the gap by proposing a collaborative process where the

voice of the customer is captured and documented by employing the event and entity models. These requirement

elements (WHAT) are cross-tabulated in three relation matrices in accordance with the weights provided by the

business users. The requirements are fed into the algorithm invented by the authors to optimize the component

grouping (HOW). This collaborative process has been successfully validated at an enterprise wide software development

project. The process was effective to help the users more actively involved in the design of the system and made

the whole process faster and more adaptive to the changes.

Keyword：Component Identification, Software Design, QFD

* This work was supported by the Software & Media Research Grant at Sangmyung University (상명대학교

소미연구소 교내연구비 지원).

** Sangmyung University School of Software Division of Media Technology

韓國SI學會誌
第5卷 第1號
2006年 5月

178 임 좌 상

1. Introduction

Software crisis, first coined in 1968 at the

NATO conference, has long prompted any silver

bullet to remedy the deep-rooted dilemma of

schedule and cost overruns and low quality

products. Although there have been remark-

able advancements in project management

and related technologies over the last decades,

they do not appear to pay off sufficiently up

to the expectation [9]. As some leading vendors

have marketed their products (e.g., Sun J2EE,

Microsoft.NET) and object-oriented tech-

nologies become more robust and stabilized,

software component has recently attracted

much attention and been favored by the

practitioners mainly due to its claimed im-

provement in quality and productivity [5, 9,

18]. Despite such penetration of component

technology into the market, however, there

seems little consensus as to what software

components are and how effectively compo-

nents should be designed and developed in

order to fully take advantage of its alleged

benefits. We wish to address these missing

gaps by raising two questions. Firstly, how

do we get the users involved more actively

in the process of collecting their require-

ments? Software project often fails to deliver

what has promised to deliver and most of the

failures are attributable to user involvement.

Some of the problems may be due to the fact

that the user requirements are often vague

and spoken in business jargons, which could

not easily get across to the system designer

[6]. More importantly, the process to deploy

the user requirements to the system is hardly

open to the users and left to the hands of

system designers as it is claimed to be tech-

nical [12]. This will certainly bring in more

frequent changes to the system that would

worsen the whole software development

process. Thus this leads us to the second

question as to how we iteratively reflect the

changes of user requirement in the design of

component models. Given this, this paper aims

to propose a semi-automatic collaborative pro-

cess to capture business requirements with

the users more actively involved and deploy

them seamlessly to software components. This

paper shall start by reviewing prior literature

regarding user requirement and component

identification. Then we shall present the col-

laborative process with an algorithmic frame-

work to be validated in this paper.

2. Related Literature

User requirements are often refined through

an iterative process and documented as a set

of scenarios for the component based devel-

opment (CBD) (e.g., use cases) [15]. Whereas

this process is relatively well understood in

the body of ‘requirement engineering’ liter-

ature [4], it is still vague the way the user

requirements are led to system design. Some

of the suggested methods to discover busi-

ness objects include either linguistic or cate-

gorical approach [15]. The former approach

is to find candidate objects/class from the

nouns. The latter is to locate such semantic

categories as place, roles and containers

among others. Despite such practical guidance,

Kaindl [12] argued that it is still difficult to

transit the classes discovered in the require-

ment analysis to the ones to be used in the

컴포넌트 인식을 위한 유즈케이스와 클래스의 연관과 전사적 소프트웨어개발에서의 적용 179

design phase. Furthermore there exist only a

few studies on grouping these fine-grained

classes into coarse components. IEEE [1]

suggests one of the crucial activities in soft-

ware design is to decompose the whole system

as long cherished by the divide and conquer

principle. In this regard, QFD (Quality Fun-

ction Deployment) may be useful to develop a

system to meet business requirements and

translate them to design requirements [2].

The QFD was invented in the 1960s and

since then has been used in various in-

dustries such as production, manufacturing

and software development [7, 14, 19]. The

QFD have been reported to be valuable us in

managing conflicting views of stakeholders in

software development [4, 7, 13]. Moskowitz

and Kim [17] proposed the formal approach

to decompose the HOQ (House of Quality) of

QFD into smaller problems combined with

the multi-attribute value theory and for-

mulated the quadratic model that minimizes

the overall dissatisfaction level due to the

out-of-group entries as a result of the

grouping. This has been reflected in the re-

search in that the legacy programs are

parsed and analyzed to extract some in-

dependent modules of source code. For ex-

ample, Etzkorn et al. [8] calculated some

meaningful metrics from the legacy object-

oriented source code to automatically identify

components. Whereas this line of research

relied on reverse engineering from the source

code, some studies shifted the focus onto the

requirement artifacts from which to identify

software components in a forward way. Jain

et al. [10] proposed a business component

identification method where the business ob-

jects were related to each other and their

static and dynamic relationships were fed in-

to the clustering algorithm and semi auto-

matic heuristics. Lee et al. [16] also used the

analysis model and the functional use cases

and classes were cross- tabulated with each

other to extract a set of reusable components.

Whereas Lee et al. [16] emphasized the cou-

pling and cohesion of use cases and classes

considered independently, Jang et al. [11]

challenged to relate use cases with business

objects using the affinity analysis technique.

They sorted use cases in a logical affinity

sequence and related them with a set of

classes in a matrix. Affinity analyses were

performed for any intersections between use

cases and classes and the type of trans-

actions (e.g., Create, Read, Update & Delete)

was analyzed. Then most associated group of

classes was to be identified as a component.

Finally, Albani et al. [3] proposed a proce-

dural algorithm based on the functional de-

composition diagram and the data model,

which associated relevant tasks and in-

formation objects in consideration of their

relationships. In contrast to the earlier studies

where the legacy source code is reverse en-

gineered, the studies using the analysis model

certainly provide a vehicle to identify compo-

nents at the earlier phase of software devel-

opment life cycle. However, these studies do

not appear to offer sufficient guidelines for

the practitioners to cope with detailed re-

quirements of the larger software develop-

ment projects. Indeed, it is often experienced

that thousands of functional requirements and

hundreds of entities are to be explored for

component modeling. This study offers the

180 임 좌 상

collaborative process where the users are al-

lowed to set up the policy (preferences) with

regards to system design and associate the

functional requirements with design require-

ments to identify software components.

3. The Collaborative Process

The collaborative process consists of three

phases - requirement analysis, overall design

and detailed design as seen in [Figure 1]. Of

these phases, the second overall design high-

lights the nature of the collaborative process

where the user and the system views are

met and coordinated as shaded in [Figure 1].

Thus the role of the user is not confined to

the earlier phase of requirement, but extended

to the later stages of system design. The

first activity as suggested in the QFD liter-

ature [13] should identify the stakeholders of

the systems and then capture the voice of the

customer. In the object-oriented development,

use case modeling is the most favored ap-

proach to document both functional and non-

functional user requirements. Then logical

entities are sought and decomposed in rela-

tion to the functional requirements of the use

cases. This is followed by the overall design

of relating both the use cases and the entities

in accordance to the policy as to the types

and strengths of the interrelationships and

their optimality. An algorithm was invented

here with a metric to evaluate the sat-

isfaction level as the ratio of the associations

included in the identified components. As the

focus of the collaborative process, this is de-

tailed in the following sections. The compo-

nents and interfaces as discovered in the

overall design are realized in the subsequent

phase of detailed design.

Use Case
modeling

Use case
relationship

Candidate
concept

identification

Concept
decomposition

Policy
set-up

Relationships
building

Validation Patterns
refactoring

Utility
refactoring

Overall design Detailed design

No
Yes

User view System view

Interface
identification

Component
identificationGrouping

Confirm?

Requirement analysis

Use Case
Realization with

components

Component
realization

[Figure 1] The collaborative process with the user view extended to the overall design phase (shaded),
which repeats until the requirements are fully deployed to the component model

컴포넌트 인식을 위한 유즈케이스와 클래스의 연관과 전사적 소프트웨어개발에서의 적용 181

3.1 Building relationships of use cases and

classes

As modeled in the earlier phase, the two

model elements of use cases and business

objects play a critical role to construct the

relation matrix. The details as to how to re-

late them are described in the policy set-up

activity. We propose three possible cross-

tabulations as follows：

1. The use case x use case relationship ma-

trix：This relates use cases with each other

to find commonly used functional compo-

nents and use case packages depending on

the extent of correlation (CU) as in Equa-

tion (1) where the subscript represents the

use case i and j respectively (0 < i < j). Con-

sidered the most correlated are ‘include,’

‘precondition’ and ‘generalize,’ being cer-

tainly stronger relations than the ‘extend’.

The least correlated use cases refer to

those hardly used together. These strongly

coupled use cases serve a locus of control

to identify components.

C U ij =

{the correlation between UCi and UCj} (1)

2. The use case x entity relationship matrix:

The second matrix is established with four

different transactional types of relations (RE)

such as C (create), R (read), U (update)

and D (delete) (see Equation 2). Non-func-

tional requirements may also be considered

into the matrix (e.g., transaction frequency).

The weight is computed as Equation (3)

for all relevant use cases and entities

where W (x) is the weight of transaction

type x.

REij = C , R, U, D (2)

W (REij) = W (C) + W (R) + W (U) + W (D) (3)

3. The entity x entity relationship matrix：

The last matrix is concerned with the re-

lationships among entities as represented in

Equation (4). The different weights may be

given according to such possible relations

among classes as inheritance, composition,

aggregation, association and dependency.

CC ij =

{the correlation between Ci and Cj} (4)

It should be noted that the weights of three

matrices be normalized. With these cross-

tabulations, we may then proceed to the

component graphs and the computation of

edge weights with MST (Minimum Spanning

Tree), which is iterated to minimize the dis-

satisfaction level of identified components as

shall be discussed in the following stage.

3.2 Grouping of use cases and classes into

components

With the relationship matrices constructed

in the earlier activity, we proceed to group

the use cases and the entities into com-

ponents. [Figure 2] shows the algorithm,

which starts with the use case graph to find

a seed solution and then moves to ‘grouping’

to minimize the loss of relationship between

use cases and entities.

Firstly, the relationship matrices are

visualized with graph notations. As seen in

[Figure 3], the use case is denoted as the ‘uc’

node whereas the class, as the ‘c’ node. The

edge represents the association between the

nodes. To make the algorithm computation-

182 임 좌 상

Construct use case graph

Find seed solution

Start

Assign
use cases to
class groups

Assign
classes to

use case groups

Evaluate
satisfaction

level

Decompose components

End

Yes Better solution?

Less than maximum
number of components?

No

Yes

No

[Figure 2] The algorithm that iteratively assigns
the use cases and the classes into
component groups to find the best
solution that minimizes penalty to lose
the relationships

ally efficient, the use case-class graph (the

left-most of [Figure 3]) is transformed to the

use case graph with all involved classes re-

moved (the middle of [Figure 3]). The in-

formation loss caused from the trans-

formation is to be recomputed in the edge

weights of the use case graph. Then the cy-

clic nodes are transformed to a tree with the

strongest nodes remained as two cyclic nodes

as in the right-most of [Figure 3] - that is,

(1) UC1,5 and (2) UC2, 3, 4.

As seen in [Figure 2], the next step is to find

a seed solution by utilizing MST (Minimum

Spanning Tree). This group shall serve as a

seed container to which the relevant classes

are assigned according to the dispatching

rule. Then use cases are assigned to the

class groups in a reverse way. This iterative

process stops at a point where the dissat-

isfaction level does not decrease. Then, one

edge is cut and the step is iterated until all

components are identified as represented in

the later part of [Figure 2]. As discussed earlier,

the edge weights are the sum of three possi-

ble relationships (i.e., use case x use case,

use case x entity, entity x entity) as com-

puted with the distance and the similarity

rule. For example, suppose that a set of use

cases are related and thus grouped into a

package to which in turn we found any re-

lated entities. Here the use cases and the en-

tities are considered similar (distant) and

thus may well (not) be grouped together in

case there exist similar (distant) relations at

the intersections between use cases and

entities. This is illustrated by the edge weight

(EWij) as in Equation (1).

C4

UC5

UC4

UC1

UC2
C3

C1

C2
UC3

UC5

UC4

UC1

UC2

UC3

UC5 UC1

UC4

UC2

UC3

Use case – class graph Use case graph Initial seed

C4

UC5

UC4

UC1

UC2
C3

C1

C2
UC3

UC5

UC4

UC2
C3

C1

C2
UC3

UC5

UC4

UC1

UC2

UC3

UC5

UC4

UC1

UC2

UC3

UC5 UC1UC5 UC1

UC4

UC2

UC3

UC4

UC2

UC3

Use case – class graph Use case graph Initial seed

[Figure 3] Finding an initial seed solution：The use case-graph is drawn with the relationships and
transformed to an initial seed with the classes removed and the edges cut with the MST rule.

컴포넌트 인식을 위한 유즈케이스와 클래스의 연관과 전사적 소프트웨어개발에서의 적용 183

EWij =
Σ∀k Classes

REik REjk

Σ∀k Classes

(REik − REjk)2

 (1)

Taken together, the total edge weight

(TEW) for all three matrices is defined as

Equation (2) where w 1 + w 2 + w 3 = 1, 0 ≤
 w i ≤ 1 .

TEWij = w1
CUij

ΣΣCUij

 + w2

EWij

ΣΣEWij

 + w 3
Σ

k l, UC i,UC j
ΣCC k l

ΣΣCC k l

 (2)

Then the dispatching rule is employed to

assign the classes to the use case groups and

vice versa by computing the relation sum

(RS) between group i and class j as in

Equation (7).

RSij = Σ
k Groupi

REkj (3)

Firstly, this rule generates an initial fea-

sible solution in which each group contains

one class at least. The first step proceeds

over the following steps.

1. Calculate the relation sum for all use case

groups.

2. Count the number of assignable classes for

each group.

3. Assign the class to the use case group

that has the minimal number of assignable

classes. Ties are broken by assigning the

class that has the larger sum of relations.

4. Repeat the above steps 2 and 3 until each

group contains one class.

Then we assign classes to use case groups

that have the largest RE. The following steps

are performed.

1. Choose the class that has the maximal re-

lation sum.

2. Assign the class to the corresponding use

case group.

3. Repeat the above steps 1 and step 2 until

unassigned class does not remain.

ObjValue =
Σ

(all and j) Group

REij

ΣΣREij

 (4)

The objective value (ObjValue) in Equation

(4) is defined as the dissatisfaction level of

identified components, which minimizes the

sum of relation weights that fall outside the

resulting groups. For any iteration, the ob-

jective value is calculated and this process is

repeated until its outcome value does not im-

prove any more.

4. A Field Experience with
the Collaborative Process

4.1 The case details

The proposed process was run for a motor

sale corporation in Korea, which was locally

the first to specialize in auto sales and

service. The corporation experiences diffi-

culties due to sluggish economy and surging

of bad consumer credit and its sales have

been steadily decreasing from $3.5 billion in

2002, $3 billion in 2003 to $2.8 billion in 2004.

To launch more aggressive sales programs,

the top manager decided to renovate the leg-

184 임 좌 상

acy system written in COBOL to be rede-

signed in UML and implemented using com-

ponent tools and technologies. The company

has served customers through well-designed

business processes operated since its foundation

in 1966, which comprises human resource,

accounting, installments, sales, procurement,

logistics, branch management, account re-

ceivable, marketing and used-car sales. A total

of 657Man-Months were used over the 14

month long development process of eight

iterations. The estimated function points of

the project were 18,476. The number of use

cases and entities was 1,008 (3,805 functions)

and 3,593 respectively. The following section

presents the core sales business process

(3,203 Function Points, 84 Man-Months) as

to how user requirements were collected, co-

ordinated and deployed into component models

with the proposed process in this paper.

4.2 Activity details for requirement analysis

Requirement analysis for the sales business

was performed to identify use cases and en-

tities to be associated in a subsequent phase.

A careful analysis of the sales produced a to-

tal of 423 functions, which were then utilized

as input to use cases. In this case, we limited

the size of use cases under 50 Function

Points and a total of 113 use cases were

identified. Remember another prerequisite to

the algorithm was a set of logical entities. A

total of 78 logical entities were identified

from candidate nouns out of various sources

such as use case descriptions, business glos-

sary and interviews with business users. The

candidate nouns and entities were refined and

further decomposed depending upon if they

had any relevant attributes. The requirement

analysis was often revisited depending upon

additional analysis we had with business

users in the overall design phase (see the re-

verse loop of [Figure 1]). Thus, any further

analysis with relationships matrixes was

conducted with 113 use cases and 78 entities.

4.3 Activity details for building relationships

between use cases and classes

Once use cases and entities were prepared,

these ingredients were cross-tabulated to

generate the relation matrices. The first matrix

related all identified use cases each other to

group them into use case packages depending

upon the strength of their relations. For ex-

ample, the stereotype ‘include’ relation was

regarded as stronger than the ‘extend’ one.

Another relation matrix was concerned with

any possible relationships among entities

such as aggregation, composition and in-

heritance. The last relation matrix of primary

interest to this study dealt with the relation-

ships between use cases and entities. This

matrix recorded all weights for the functional

requirements of intersections between use

case and entities (see [Figure 4]). The matrix

was examined if there existed any blackholes

(i.e., an entity never used by any use cases)

and miracles (a use case that did not use any

entities). Also read-only entities were exam-

ined if they were created in other domains

(faulty otherwise). The parameters were set

as follows：

∙The number of components to be identified

was set between 10 and 30.

컴포넌트 인식을 위한 유즈케이스와 클래스의 연관과 전사적 소프트웨어개발에서의 적용 185

[Figure 4] Relationships between use cases (row) & classes (column). The scores were given according to
the policy. The dotted boxes denote horizontal (vertical) patterns

∙Four important functional types considered

in this study included create (C), read (R),

update (U) and delete (D). The weights

given to the transaction types were set as

2 for R and 8 for C, U and D.

The relations of use cases to classes were

well scattered as seen in [Figure 4] and it

seemed not easy to identify any significant

components. The horizontal pattern occurred

for the relationship of a use case with many

entity classes. This pattern was often ob-

served for any batch processing which re-

quired access to many relevant entities. On

the other hand, the vertical pattern referred

to the other case where an entity class was

used heavily by many use cases as often

witnessed between the base use case and the

included use case.

4.4 Activity details for grouping of use cases

and classes into components

The data as seen in [Figure 4] were fed to

the algorithm. This resulted in a total of 19

coarsed and six fine grained components (i.e.,

gray rectangles) as seen in [Figure 5].

Remember the objective was to minimize the

penalty that would have on the component

group by removing any relationships out of

the group. Thus any further searching for

any meaningful components would be aban-

doned due to the dissatisfaction level minimized

with 25 components as explained earlier. The

dissatisfaction level was 30.57% in this case.

[Figure 5] shows that the biggest compo-

nent contained 13 use cases and six classes.

There also existed two of fine-grained com-

ponents with one to one relationship between

Horizontal patterns

V
ertical patterns

186 임 좌 상

[Figure 5] Running grouping algorithm with 113
use cases & 78 entity classes. The gray
rectangle () denotes the automatic
approach whereas the thick white
(), the semantic process

use case and class. We had a number of

‘semantic’ sessions with the business users

and developers if the grouped components

were meaningful in their business operations.

The semantic session proceeded smoothly

with the relation matrices as there recorded

all penalties in numbers and all stakeholders

could easily understand what to lose by get-

ting in and out any classes. The results of

the semantic process are displayed in thick

white rectangles in [Figure 5] and any loss

of meaningful relationships were insignificant

in comparison to the algorithmic result (i.e.,

the gray rectangle).

4.5 An exemplary component model for the

detailed design

The diagrams that could be produced in

reference to the grouping result may include

component diagrams, assembly diagrams, class

diagrams and sequence diagrams. [Figure 6]

shows two of these UML diagrams. The iden-

tified components were sufficiently and correctly

[Figure 6] Component & class diagrams. The left component diagram shows all provided and required
interfaces. The right one detailed classes for a component with functional operations

컴포넌트 인식을 위한 유즈케이스와 클래스의 연관과 전사적 소프트웨어개발에서의 적용 187

specified in the detail design phase so that

the use cases of not only the sales business

but also other domains could be realized in

reference to them. As seen in [Figure 6], the

provided interfaces were drawn from the func-

tional requirements of a component. On the

other hand, the required interfaces were func-

tionalities of other components. Presented in

the right-side class diagram of [Figure 6] were

the details of a class inside the component.

5. Discussion

Although CBD has been widespread in

practice, little is known as to the process

user requirements could be captured into re-

usable software components. This task, how-

ever, requires much cognitive effort to take

into account all possible interactions among

classes and components. Firstly, for large and

complex systems, there are often more than

hundreds of classes and functional require-

ments to deal with and thorough examination

of such data would be simply impossible and

error prone. Secondly, the iterative and in-

cremental approach as often adopted in recent

CBD practice, changes in user requirements

also force modification to components identi-

fied earlier. Thus more systematic approach

is required to reduce error-proneness in com-

ponent identification. As proven to be useful

in managing functional and non-functional

requirements of the users in various in-

dustries, the QFD process was employed in

this paper to identify software components.

Three potential relationship matrices were

cross tabulated with use cases and entities

and an algorithm was developed by the au-

thor to semi-automatically deploy user re-

quirements into software components. The

algorithm was validated for the first case and

resulted in an acceptable solution with appro-

priate degree of granularity and dissatis-

faction. We further validated the algorithm

with the case that contained a horizontal pat-

tern and thus would possibly lead to a

‘king-kong’ component. Expectedly we ob-

served a coarsely grained component. Any

decoupling approach would be valued to de-

compose such big sized components. The al-

gorithm was designed to allow to easily plug

any expert opinion into play in the form of

weights to be given for any intersections

among those elements of use cases and

classes that are so crucial in object-oriented

analysis and design. The QFD based algo-

rithm can be run repeatedly until the solution

satisfies the expected quality of reusable

components. Considering that enterprise soft-

ware development often requires analysis of

hundreds of use cases and classes and its

manual handing is a daunting task, further

research is required with more practical cases

to validate and improve the algorithm. It is

also useful to study the impact of parameters

and the way to easily incorporate expert

opinion into the systems.

References

[1] IEEE guide to software design descrip-

tions, in IEEE Std 1016.1-1993, 1993.

[2] Akao, Y., “New product development and

quality assurance deployment system”,

Standardization and Quality Control, Vol.

25, No.4(1972), pp.243-246.

188 임 좌 상

[3] Albani, A., A. Keiblinger, K. Turowski,

and C. Winnewisser, Domain based

identification and modelling of business

component applications, in Advances in

Databases and Information Systems,

Proceedings, Springer-Verlag Berlin：

Berlin, 2003, pp.30-45.

[4] Buyukozkan, G. and O. Feyzioglu, “Group

decision making to better respond cus-

tomer needs in software development”,

Computers & Industrial Engineering,

Vol.48, No.2(2005), pp.427-441.

[5] D’Souza, D. F. and A. C. Willis, Objects,

Components, and Frameworks with UML

：The Catalysis Approach, Addison-

Wesley, 1999.

[6] Damian, D., J. Chisan, L. Vaidyanathasamy,

and Y. Pal, “Requirements engineering

and downstream software development：

Findings from a case study”, Empirical

Software Engineering, Vol.10, No.3(2005),

pp.255-283.

[7] Elboushi, M. I. and J. S. Sherif, “Object-

oriented software design utilizing quality

function deployment”, Journal of Systems

and Software, Vol.38, No.2(1997), pp.133-

143.

[8] Etzkorn, L. H., W. E. Hughes, and C. G.

Davis, “Automated reusability quality

analysis of OO legacy software”, Infor-

mation and Software Technology, Vol.43,

No.5(2001), pp.295-308.

[9] Glass, R. L., “The realities of software

technology payoffs”, Communications of

the Acm, Vol.42, No.2(1999), pp.74-79.

[10] Jain, H., N. Chalimeda, N. Ivaturi, and B.

Reddy, Business component identification

- A formal approach, 2001, pp.183-187.

[11] Jang, Y. J., E. Y. Kim, and K. W. Lee,

Object-oriented component identification

method using the affinity analysis tech-

nique, in Object-Oriented Information

Systems, Springer-Verlag Berlin：Berlin,

2003, pp.317-321.

[12] Kaindl, H., “Difficulties in the transition

from OO analysis to design”, IEEE Soft-

ware, Vol.16, No.5(1999), pp.94-102.

[13] Karlsson, J., “Managing software re-

quirements using quality function de-

ployment”, Software Quality Journal, Vol.

6, No.4(1997), pp.311-325.

[14] Kudikyala, U. K. and R. B. Vaughn, “Soft-

ware requirement understanding using

Pathfinder networks：discovering and

evaluating mental models”, Journal of

Systems and Software, Vol.74, No.1(2005),

pp.101-108.

[15] Larman, C., Applying UML and Patterns

：An Introduction to Object-Oriented

Analysis and Design and the Unified

Process, 2nd Edition ed.：Prentice-Hall,

2002.

[16] Lee, W. J., O. C. Kwon, M. J .Kim, and

G. S. Shin, “A method and tool for iden-

tifying domain components using object

usage information”, ETRI Journal, Vol.

25, No.2(2003), pp.121-132.

[17] Moskowitz, H. and K. J. Kim, “QFD

Optimizer：A novice friendly quality

function deployment decision support

system for optimizing product designs”,

Computers & Industrial Engineering,

Vol.32, No.3(1997), pp.641-655.

[18] Tsagias, M. and B. Kitchenham, “An

evaluation of the business object ap-

proach to software development”, Journal

컴포넌트 인식을 위한 유즈케이스와 클래스의 연관과 전사적 소프트웨어개발에서의 적용 189

of Systems and Software, Vol.52, No.2-3

(2000), pp.149-156.

[19] Zhou, M., “Fuzzy logic and optimization

models for implementing QFD”, Compu-

ters & Industrial Engineering, Vol.35,

No.1-2(1998), pp.237-240.

190 임 좌 상

 저 자 소 개

임 좌 상 (jslim@smu.ac.kr)

상명대학교 소프트웨어대학에서 부교수로 재직하고 있으며, 미디어학부

에서 학부장과 정보통신연구진흥원 NEXT과제 사업책임자 직책을 맡고

있다. 주로 소프트웨어공학 분야, 특히 객체지향설계와 컴포넌트기반개발

과 관련한 주제에 관심을 갖고 있다. 은행, 카드, 보험, 감독, 신용보증과

같은 금융산업을 중심으로 공공, 유통사업군에서 비지니스컨설팅과 소프

트웨어개발 관련 다수의 SI프로젝트에 참여한 실무경험이 있다. 지금까

지 Decision Support Systems, Human Factors, Journal of Systems and

Software, Journal of Behavioral Decision Making, Journal of Fore-

casting 등의 학술지에 논문을 발표한 바 있다.

