
1 79

협업적 소프트웨어 개발 관리 시스템의 설계 및 구현

한관희*․송희석**

Design and Implementation of a Collaborative Software

Development Management System

Kwan Hee Han*․Hee Seok Song**

Abstract

Since software development team members have been more geographically spread due to the globalization of

business and Internet technologies, the management of deliverables and communication efforts for developing

high-quality software products on time is becoming more complicated. Among the functional requirements for

collaborative software development management, the manipulation of shared information objects is essential for the

collaborative work among distributed development team members. This paper proposes an integrated information

object management framework comprised of a so-called BOC (Bill Of Class) scheme and a standardized software part

dictionary for managing shared information objects efficiently among distributed co-workers. In order to manage these

complex information objects, the proposed framework adopt product structures represented by Bills Of Materials (BOM)

as stems for integrating the various information objects. Based on the proposed framework, a collaborative software

development management system (CSDMS) is implemented, and the functionalities and the structure of the system

are also described in this paper. The proposed system provides sufficient functionalities for the change management

of information objects and the management of their relationship to other objects rather than existing system.

Keyword：Information Object, Collaborative Software Development, Collaboration, Shared

Workspace

* 경상대학교 산업시스템공학부 교수

** 한남대학교 경영정보학과 교수, 교신저자

韓國IT서비스學會誌
第5卷 第2號
2006年 8月

80 한관희․송희석

1. Introduction

Most enterprises are struggling to change their

existing business processes into agile, prod-

uct-centric, and customer-centric structures to

survive in this competitive global business

environment. This is no exception in the soft-

ware industry. Currently, since software devel-

opment team members have been more geo-

graphically spread due to the globalization of

business and Internet technologies, project

management and communication efforts for de-

veloping high-quality software products on time

are becoming more complicated.

A general software development process can

be described as follows：a software enterprise

organizes qualified people into a project team for

developing a specific software product. During

the process execution, team members collabo-

rate with each other toward common goals.

After all, a project team produces a software

product, which is the goal of any project itself.

In cases of distributed development, more man-

agerial difficulties arise than with general soft-

ware development because the group work is

distributed across space and time. These cases

require more efficient collaborative work to

bring the efforts of all co-workers together in

order to develop a software product. So there

is a great need to establish a collaborative soft-

ware development management environment,

where collaboration and communication among

distributed team members can be carried out

effectively. This would enable software enter-

prises to team-up with their distributed team

members to develop more innovative software

products at lower cost, and with reduced time

to market.

The functional requirements for a collabo-

rative software development management sys-

tem (CSDMS) can be summarized as follows [4,

13]. 1) It must provide distributed team mem-

bers with a shared or virtual workspace to coor-

dinate various activities for collaborative work,

as a co-located environment provides team

members with face-to-face meeting facilities. 2)

It must facilitate to create, store, distribute, and

share information objects such as design docu-

ments, source code, and metadata associated

with software objects produced during a soft-

ware development life cycle. 3) It must provide

process management functions to define and

implement change processes and workflows

based on business rules. 4) It must provide proj-

ect management functions such as project

scheduling, task allocation, and status moni-

toring.

Among these requirements, the systematic

management of information objects produced-

during a software development life cycle is es-

sential because distributed team members per-

form their tasks through the creation, access,

update, use, and exchange of information objects

such as documents and source code.

A layered functional architecture of the CSDMS

focusing on information object management is

depicted in [Figure 1]. It consists of three layers.

The first is a communication support layer,

where distributed team members can communi-

cate with other participants for collaborative

work synchronously or asynchronously. The

second layer is composed of three modules,

among which the information object manage-

ment module is the core module, and is com-

plemented by the project and the process man-

agement modules. The third, the system admin-

협업적 소프트웨어 개발 관리 시스템의 설계 및 구현 1 81

istration layer, provides common system-level

administration functions such as user author-

ization/access control, security control, and stor-

age management.

 [Figure 1] Layered Functional Architecture of
CSDMS

To develop an integrated and full-fledged

system that can facilitate the manipulation of

shared artifacts among distributed team mem-

bers, such as that depicted in [Figure 1], it is

essential to establish a framework for system-

atically managing the various information ob-

jects produced during the software development

process.

Conventional manufacturing industries have

used product data management systems to

manage vast numbers of information objects for

developing their complex products during the

product development phase, which include prod-

uct structures, drawings, technical notes or cal-

culations, etc. In order to manage these complex

information objects, current product data man-

agement systems employ product structures

represented by Bills Of Materials (BOM) as

stems for integrating the various information

objects. As an example, [5] introduced a BOM

model that can represent product configurations,

assembly structures, different product views,

and even engineering changes in a coherent

way.

Since the BOM in the manufacturing industry

is used as the fundamental scheme that in-

tegrates various product-related information in-

to a single coherent structure, and many critical

decisions are made based on how the BOM is

structured [7], an integrating scheme like the

BOM is also needed in software product

development. Furthermore, efficient ‘software

part’ management is also required to increase

software development productivity by avoiding

redundancies and duplications through stand-

ardization. The aim of this paper is to propose

an integrated information object management

framework for collaborative object-oriented soft-

ware development management, and to imple-

ment a CSDMS based on the proposed frame-

work.

The rest of this paper is organized as follows.

In the next section, related work is reviewed.

Section 3 presents the concept of an integrated

information object management framework

comprised of a so-called BOC (Bill of Class)

scheme, which is a BOM in the software in-

dustry, along with the software part dictionary

concept. In Section 4, the design and imple-

mentation of a CSDMS based on the proposed

framework is described. Finally, the last section

contains a conclusion and further research.

2. Related Work

The research on collaborative software devel-

opment management is closely related to other

disciplines such as project management, work-

flow management, CSCW (Computer Supported

Cooperative Work), software process model, and

82 한관희․송희석

software configuration management. Among

research of workflow systems and software

process models, Endeavors [3], an open, dis-

tributed, extensible process execution environ-

ment, was designed to improve coordination and

managerial control of development teams. Its

architecture explicitly supports the goal of the

distribution of users and processes, and provides

rich support for integration with commercial

off-the-shelf tools. Endeavors supports dynam-

ic process changes over configurable enactment

models, has an event monitoring structure, and

has integrated support for communication be-

tween participants. The SPADE [2] environ-

ment has much in common with Endeavors. It

is based on a multi-level architecture having re-

pository, process enactment, and user inter-

action levels, and provides process evolution

support. These two systems have, however, in-

sufficient functionalities for the change man-

agement of information objects and the man-

agement of their relationship to other objects.

The MILOS system [13] supports the dynamic

coordination of distributed software develop-

ment teams by integrating project planning and

workflow technologies over the Internet. It pro-

vides functionalities such as process planning

and workflow execution, and has a notification

mechanism. MILOS places emphasis on the in-

tegration of project planning and workflow

support. It achieves this integration by support-

ing Microsoft’s MS Project as a planning inter-

face for the flexible workflow engine. Moreover,

MILOS has extended its scope to knowledge

management systems, where development teams

share their experiences and knowledge [14].

However, this system also lacks the manage-

ment function of information objects produced

during the software development cycle.

Research on information object management

in a distributed software development environ-

ment is actively being conducted in the software

configuration management area [12]. Hoek [9],

and [16] have addressed the integration of con-

ventional configuration management with soft-

ware process and project management functions

over the Internet. Hunt [10] and Render[17] have

proposed conflict resolution methods for con-

current changes on one information object by

distributed team members, but this research has

focused on only change control of information

objects and change process execution. With re-

gard to software object management, the DHT

(Distributed semantic Hypertext) approach [15]

has modeled the relationships of information ob-

jects based on the semantic hypertext model,

and has implemented a virtual repository for in-

formation objects in a distributed environment.

However, this approach has only focused on the

configuration management features of software

classes.

Among related research in the CSCW area,

Appelt [1] has proposed a shared workspace

system called BSCW (Basic Support for Cooper-

ative Work), of which the core function is docu-

ment management over the Internet. This re-

search has addressed the effects of shared

workspaces in globally distributed, loosely or-

ganized groups, and information about the users’

activities within their workspaces, i.e., aware-

ness services. This research places great em-

phasis on the group awareness features, which

provide information about what was done, when,

and by whom, on document objects.

In order to develop a CSDMS satisfying the

functional requirements described in Section 1,

협업적 소프트웨어 개발 관리 시스템의 설계 및 구현 1 83

it is also significant to investigate current com-

mercially available tools for collaborative soft-

ware development. Although project manage-

ment tools like Microsoft’s MS Project provide

the functionalities of scheduling, resource allo-

cation, and leveling for project management,

they don’t support the management of infor-

mation objects produced during software devel-

opment, and have few communication function-

alities. Most traditional software configuration

management tools place great emphasis on re-

vision control of information objects. On the

other hand, they have few functionalities for

project and process management. General work-

flow systems such as IBM’s WebSphere MQ

workflow [11], Fujitsu’s Teamware Flow [6],

and Tibco’s Staffware Process Suite [18], focus

on the workflow automation of pre-defined

processes. However, these automation functions

are not integrated with project management

functions and provide no systematic information

object management functions. Software enact-

ment engines are more flexible than general

workflow products in software development

processes, and provide comprehensive integra-

tion facilities with other software development

tools. They are, however, slightly more difficult

to use compared with general workflow tools,

and provide few communication functionalities.

As reviewed above, currently available tools on-

ly partially satisfy the functional requirements

for collaborative software development mana-

gement.

3. Information Object
Management Framework

The type of information objects that are cre-

ated, updated, stored, and shared during soft-

ware development processes are document,

source code, and metadata associated with soft-

ware artifacts themselves. An information ob-

ject, which comprises or describes a software

artifact is related to many information objects

associated with that software artifact. Because

relationships among information objects are be-

coming more complicated as a software devel-

opment process proceeds, it is therefore difficult

for team members to easily understand the

meaning of the relationship among them. Since

this situation increases the need for more com-

municative effort and consequently decreases

development productivity, it is essential to es-

tablish a structuring scheme for managing in-

formation objects efficiently and systematically.

Highsmith III [8] has pointed out the importance

of providing contextual information as well as

content information for collaboration among

distributed team members. Since contextual in-

formation is represented by relationships among

information objects such as hierarchy, reference,

dependency, and derivation, any integrating

scheme must be able to manipulate these com-

plex relationships.

During the programming phase of software

development, it is common for development

team members use ‘software parts’ such as class

name and database table/field name for assem-

bling a software product without any restric-

tions. As a result, the situation frequently occurs

that the same name is used for defining two or

more different entities, or a single entity is de-

fined by two or more different names. Since

these practices decrease development and main-

tenance productivity, a standard way of using

software parts is needed.

84 한관희․송희석

A proposed framework consists of a structur-

ing scheme and a standardized software part

dictionary for managing information objects for

collaborative object-oriented software develop-

ment.

3.1 BOC (Bill Of Class) Scheme

A BOC (Bill Of Class) is a fundamental scheme

that integrates various software product-related

information into a single, coherent structure. Its

structure is as follows: one object-oriented soft-

ware product (‘product’ class) is composed of

one or more packages that bundle closely related

software classes and one or more documents, as

depicted in [Figure 2], by the form of a UML

(Unified Modeling Language) class diagram. A

‘package’ class refers to one or more ‘document’

classes that describe it. This referencing is a

horizontal relationship between two classes. A

document class has major attributes such as an

identifier, name, type, creation date, and version

number. One package class is comprised of one

or more software classes, and one ‘software

class’ class consists of multiple ‘data’ classes,

which are composed of multiple ‘unit-data‘

classes representing atomic data names within

a program source code. For example, the

‘Inventory Level’ data instance, which means

the inventory level of a material, is an assembly

of ‘Inventory’ unit-data instance and ‘Level’

unit-data instance. A ‘software class’ may have

a parent or a child class, and has major attrib-

utes such as an identifier, name, creation date,

and location. Data and unit-data classes are fur-

ther generalized into ‘part’ super-class, having

major attributes such as an identifier and name.

‘Product’, ‘package’, and ‘software class’ classes

are also abstracted to ‘component’ super-class.

Consequently, a software product structure has

a hierarchical relationship among its component

classes. This software product structure, as de-

scribed above, is called a ‘BOC (Bill Of Class)’

in this paper.

 [Figure 2] Logical Structure of BOC (Bill Of
Class)

There are four types of relationships among

software product information objects, and these

relationships can be systematically managed

based on the BOC scheme：1) a hierarchical re-

lationship representing a whole-part structure,

2) a referential relationship, where one class re-

fers to other class horizontally, 3) a dependency

relationship describing a parent-child structure,

4) a derivative relationship tracing a change his-

tory of single information object instance.

Therefore, by the BOC structure, distributed

team members can easily understand the rela-

tionships among information objects, and thus

can use the right information objects for their

development tasks. The types of relationships

협업적 소프트웨어 개발 관리 시스템의 설계 및 구현 1 85

derived from the BOC structure are as follows：

•The software class-package relationship,

which describes the where-used relation or

the inverted structure of a software product.

•The super class-subclass relationship, which

represents dependencies between parent and

child classes.

•The document-software class relationship,

which describes the hierarchical structure or

inverted structure between software classes

and the document in which they are des-

cribed.

•The package-document relationship, which

relates a package to document(s) describing

that package.

•The derivative relationship, which describes

the change history of a single information ob-

ject represented by a version tree.

3.2 Software Part Dictionary

Logically, the structure of a software product

could be represented by [Figure 2]. But the

properties of the ‘part’ class are quite different

from that of the ‘component’ class because the

‘software class’ cannot be assembled completely

by using the ‘data’ class only at the program

source code. Therefore, for the efficient man-

agement of information objects, it is necessary

to divide logical BOC structures into two

groups, and to manage each part by different

methods. One group could be managed by a

BOC scheme, which constitutes a hierarchical

relationship of a software product (i.e., ‘product’

-‘package’-‘software class’). The other, which

forms a ‘unit-data’-‘data’ relationship, could be

managed by a standardized software part dic-

tionary. A software part dictionary is an in-

formation repository for the standardized data

used in writing a program source code. Under

the part dictionary control environment, there is

an explicit constraint that the ‘data’ instance

used at a program source code must only be

made of combinations of pre-defined atomic

‘unit-data.’ The resulting data instance com-

prised of pre-defined unit-data must be also

pre-defined in a software part dictionary before

the actual usage at a program source code. The

usage of only standardized data during pro-

gramming can increase software development

and maintenance productivity substantially.

If each team member wants to use a specific

data instance in his program source code, first

of all he must determine whether a required data

instance exists or not in the software part

dictionary. If he finds required data, he can use

pre-defined data without restriction. Or he must

determine whether a required data instance

could be assembled through some combination

of pre-defined unit-data. If possible, after regis-

tering a data instance comprised of pre-defined

unit-data to the part dictionary through the ap-

proval process, he can use this data instance in

his program. If not, an atomic unit-data instance

required for data assembly must be registered

through the approval process before creating the

necessary data instance. As well as registration

of data and unit-data instance to the software

part dictionary, a pre-defined approval process

is required for all change events for information

objects, such as modification and deletion during

the development process. This approval process

is managed by the information object change

control function, which is a part of the process

management of CSDMS.

86 한관희․송희석

4. Implementation of a
Collaborative Software
Development Management
System：IOMAN

The basic goals of developing the IOMAN

(Information Object MANagement for collabo-

rative software management) system based on

the proposed integrated information object man-

agement framework are：

•To manage the contextual information as well

as content information of software artifacts

•To provide project management and monitor-

ing tools for distributed team members

•To manage workflows for the information

objects change process

•To facilitate communication and coordination

among geographically spread team members

To accomplish these goals, the structure of

the IOMAN system is based on the layered ar-

chitecture of the CSDMS, depicted in [Figure 1].

The main screens representing modules of the

IOMAN system, except for the system admin-

istration module, are illustrated by [Figure 3].

[Figure 3] Main screens of IOMAN system

협업적 소프트웨어 개발 관리 시스템의 설계 및 구현 1 87

The project management module is divided

into two parts. One part is for defining the proc-

ess definition template required for a software

development. The other part is for selecting an

appropriate process definition among the pre-

defined process templates for the execution of

a specific development process, for modifying

and determining the schedule and resource allo-

cation for each process step, and for monitoring

the project status. The process management

module provides the capabilities of managing

information object change workflows and ad-

ministrative workflows. The information object

change workflow is the approval process for the

requested changes such as registration, mod-

ification, and deletion of various information

objects. The implemented function for commu-

nication support in the IOMAN system is the

bulletin board facility, where major events and

information are posted to team members. By

utilizing this facility, they can discuss and ex-

change opinions regarding any specific topic.

In the IOMAN system, a single shared work-

space is allocated to one software project team,

and only authorized project team members can

access his team’s workspace. Because it is es-

sential for distributed team members to access

and participate in this shared workspace more

easily, this system is designed in a web and

Java-based 3-tier architecture, which enhances

the interoperability, platform independency, and

reusability. For this architecture, the user inter-

face is developed by using JSP (Java Server

Page) and Java applets, and the application

logic is implemented by using Java classes and

Java beans. The operating environment of the

IOMAN system is as follows：Apache 1.3.19 for

a web server, Tomcat 3.2 for a servlet engine,

and MS SQL 2000 for the persistent data

management.

As an illustrative example, we chose the in-

formation object management module, since it

is a core module where various information ob-

jects for software artifacts are managed sys-

tematically by the BOC scheme and a software

part dictionary. As depicted in [Figure 4], the

information object management module is div-

ided into four major functions：1) component

management, 2) BOC navigation, 3) relationship

analysis, and 4) software part dictionary.

 [Figure 4] Function Chart of Information Object
Management Module

The component management function man-

ages the central repository, where contextual

information is stored as well as content in-

formation of information objects within soft-

ware artifacts. The BOC navigation function

provides the capability of graphical viewing and

navigation of a BOC structure. [Figure 5] dis-

plays a typical BOC structure of a specific soft-

ware product called ‘C3-Space’, where different

icons distinguish product, document, package,

and software class from each other, and a man-

agement document is also differentiated from a

technical document by icon color.

88 한관희․송희석

[Figure 5] BOC (Bill Of Class) Structure

The relationship analysis function displays

the relationship information among the in-

formation objects graphically so that team

members can understand with ease the impact

of a proposed change of a software component

upon the product structure. [Figure 6] displays

the relationship analysis results of specific soft-

ware product - the leftmost window displays

the BOC of a software product (C-3 Space), at

which the relationship of the shaded ‘Bulletin_

BoardDbHandler1.0’ class is analyzed. The sec-

ond window shows a class-document inverted

structural relationship of a shaded item in the

first window (i.e., Bulletin_BoardDbHandler 1.0).

This relationship shows that the description of a

specific software class, called Bulletin_BoardDb

Handler1.0, can be found in documents repre-

sented as parts in a tree structure. The third

window displays a class-package-product rela-

tionship of a shaded item in the second window.

This relationship represents an inverted struc-

tural relationship (i.e., a where-used list) in a

software product structure. This window shows

that the Bulletin_BoardDbHandler1.0 class is in-

cluded in a CoBulletin1-2 package, which in turn

can be found at the product C3-Space1.0 and the

product C3-IOMan1.0. Finally, the fourth win-

dow shows the version history of a shaded item

in the third window (i.e., CoBulletin1.2 package).

A version tree describes a derivative relation-

ship (i.e., a change history) occuring within a

single information object. In this example, the

prior version of the CoBulletin 1.2 package is the

CoBulletin 1.0, which is also re-versioned to the

CoBulletin 1.1 that is further branched to the

CoBulletin 1.1.1.

During the programming phase, at which dis-

tributed team members use the IOMAN system

for collaborative software development, project

team members have to use only the standardized

data stored in the software part dictionary that

manages data and unit-data. This restriction

can increase the software development and

maintenance productivity substantially by avoid-

ing redundancies and duplications of data. There

are many types of data managed in the software

part dictionary such as class name, attribute

name, method name, package name, database

table name, and database table column name.

[Figure 7] shows data and unit-data lists man-

aged by the software part dictionary. As dis-

played in [Figure 7], data has attributes such as

a name, Korean name, English name, data type,

data length, originator, and description.

[Figure 6] Relationship Analysis

협업적 소프트웨어 개발 관리 시스템의 설계 및 구현 1 89

 [Figure 7] Data/Unit-Data List of Software Part
Dictionary

In the IOMAN system, since all information

objects are stored at the central repository, the

check-in task must be performed after an in-

formation object is created or modified. So only

after the registration or change request is ap-

proved can it be checked-in as the newly re-

leased version. The check-out task is performed

when information objects are requested for in-

quiry or modification by team members. In this

case, the system checks whether this check-out

is for simple use without a change or for use

for a change. When the check-out for a change

is requested, the system locks the requested ob-

ject and prevents multiple team members from

attempting to change this information object

simultaneously. When a check-out for currently

locked information object is requested, infor-

mation such as current owner and check-out

date is provided to the requester. This facilitates

the task of coordination related to the locked in-

formation object between the object owner and

the requester.

<Table 1> shows the functionalities of our

collaborative software development manage-

ment system compared to commercial systems

in project management, workflow management,

and configuration management fields. The pro-

posed system covers most of functionalities re-

quired in software development life cycle as il-

lustrated in <Table 1>.

5. Conclusions and Future
Work

Recently, since cases of distributed software

development and component-based develop-

ment are rapidly increasing, it is essential to

provide a collaborative software development

management environment for reducing develop-

ment time and cost. During a development proc-

ess, team members perform their tasks through

the creation, access, update, use, and exchange

of information objects such as document and

source code. Because the relationships among

<Table 1> Comparison result in functional aspect

systems
required
functions

Project
Management tool
(MS project)

Configuration
Management

(Borland StarTeam)

Workflow system
(IBM MQ
workflow)

Proposed
IOMAN
system

Communication support - - ○ ○

Information object management - ○ - ○

Project management ○ △ △ ○

Process management ○ ○ ○ △

System administration ○ ○ ○ ○

90 한관희․송희석

information objects are very complex, and the

management of software development processes

requires a multidisciplinary approach, the col-

laborative object-oriented software develop-

ment management must be based on a coherent

and integrated information object manage-

ment framework. This paper proposes the BOC

scheme, under which various information ob-

jects are structured systematically and relation-

ship information among them such as hierarchy,

reference, dependency, and derivation is man-

aged effectively, as well as content information

of information objects. Also proposed is the

software part dictionary concept, which accel-

erates the standardization of data used during

the programming phase. Under the software

part dictionary, development and maintenance

productivity can be increased substantially by

avoiding redundancies and duplications of data.

Lastly, the functionalities and structure of a col-

laborative software development management

system is presented through the implementation

of a CSDMS.

More research is, however, still needed in the

IOMAN system to add new functionalities, and

to improve current implemented functions. At

present, team members participating in the

IOMAN system have to register all metadata

and relationship information about software ob-

jects manually. This is tedious and time-con-

suming, so it would be better if a part of this

data were extracted from source code and stor-

ed to the repository automatically. For this

function, it is necessary to integrate the system

with commercial development tools. In the

process management module, a new graphical

process modeler is also needed rather than the

current text-based process definition editor.

Finally, for facilitating collaborative work, com-

munication functions among team members and

awareness features must be extended and

strengthened.

Acknowledgement

This research was conducted as a part of the

next generation & new technology development

project (Development of high-safety & light

weight Al automotive parts for next generation

vehicles) sponsored by Ministry of Commerce,

Industry and Energy.

References

[1] Appelt, W., WWW based collaboration

with the BSCW System, Springer Lecture

Notes in Computer Science 1725, Berlin,

Springer-Verlag, (1999), pp.66-78.

[2] Bandinelli, S. C., E. D. Nitto, and A. Fugetta,

“Supporting cooperation in the SPADE-1

environment”, IEEE Transactions on Soft-

ware Engineering, Vol.22, No.12(1998), pp.

841-865.

[3] Bolcer, G. A. and R. N. Taylor, “Endeavors:

A process system integration infrastruc-

ture”, Proceedings of the 4th International

Conference on the Software Process, Bring-

ton, England, 1996.

[4] Chaar, J., S. Paul, and R. Chillarege, Virtual

project management for software, NSF

Workshop on Workflow & Process Auto-

mation, University of Georgia, Athens, 1996.

[5] DO, N., H. Kim, H. S. Kim, Y. J. Lee, and

J. H. Lee, Web-based Product Data Mana-

gement and Parts Catalog Publication

System for Collaborative Product Develop-

협업적 소프트웨어 개발 관리 시스템의 설계 및 구현 1 91

ment, IIWAS 2001, Linz, Austria, 2001.

[6] Fujitsu, Teamware Office, http://www.

teamware.net/Resource.phx/teamware/in-

dex.htx, 2004.

[7] Garwood, D., Bill of material-structured

for excellence, Georgia, Dogwood Publish-

ing Company, 1995.

[8] Highsmith III JA, Adaptive software de-

velopment, New York, Dorset House Pub-

lishing, (2000), pp.261-293.

[9] Hoek, A., D. Heimbigner, and A. L. Wolf,

“Does configuration management research

have a future?”, Proceedings of the 5th

International Workshop on Software Con-

figuration Management, Seattle, WA, 1995.

[10] Hunt, J. J., F. Lamers, J. Reuter, and W. F.

Tichy, “Distributed configuration manage-

ment via java and the world wide web”,

Proceedings of the 7th International Work-

shop on Software Configuration Manage-

ment, Boston, MA, (1997), pp.161-174.

[11] IBM, WebSphere MQ workflow version

3.5, http://www-306.ibm.com/software/in-

tegration/wmqwf, 2004.

[12] MacKay, S. A., “The state of the art in con-

current, distributed configuration manage-

ment”, Proceedings of the 5th International

Workshop on Software Configuration Mana-

gement, Seattle, WA, 1995.

[13] Maurer, F., B. Dellen, F. Bendeck, S.

Goldmann, H. Holz, B. Kotting, and M.

Schaaf, “Merging project planning and web-

enabled dynamic workflow technologies”,

IEEE Internet Computing, Vol.4, No.3(2000),

pp.65-74.

[14] Maurer, F. and H. Holz, “Process-oriented

knowledge management for learning soft-

ware organizations”, Proceedings of 12th

Knowledge Acquisition Workshop (KAW

'99), Banff, Canada, 1999.

[15] Noll, J. and W. Scacchi, “Supporting soft-

ware development in virtual enterprise”,

Journal of Digital Information, Vol.1, No.4

(1999), http://jodi.ecs.soton.ac.uk.

[16] Rational Software, Simplifying the process

of change-Rational Clear Case, www.ra-

tional. com, Cupertino, CA, 2005.

[17] Render, H. and R. Campbell, “An ob-

ject-oriented model of software configura-

tion management”, Proceedings of the 3rd

International Workshop on Software Con-

figuration Management, Trondheim, Nor-

way, (1991), pp.127-139.

[18] Tibco, Staffware Process Suite, http://

www.tibco.com/software/process_manage-

ment /staffware_processsuite.jsp, 2004.

92 한관희․송희석

 저 자 소 개

한 관 희 (hankh@gnu.ac.kr)

아주대학교에서 산업공학을 전공했으며 한국과학기술원 산업공학과 석사

및 자동화 및 설계공학과 박사학위를 취득하였다. 대우정보시스템㈜에서

17년간 근무하였으며 현재 경상대학교 산업시스템공학부 교수로 재직 중

이다. 경남제조IT혁신인력양성사업단 부단장을 맡고 있으며 주요 관심분

야는 Enterprise Modeling, 워크플로우, CSCW, 제조시스템 모델링 및 시

뮬레이션 등이다.

송 희 석 (hssong@hannam.ac.kr)

고려대학교에서 경영학을 전공하였으며, KAIST에서 경영과학 전공으로

석사학위를 경영공학 전공으로 박사학위를 취득하였다. 대우정보시스템

㈜에서 15년간 근무하였으며 현재 한남대학교 경영정보학과 조교수로 재

직 중이다. Information System Review 편집위원을 맡고 있으며 주요 관

심분야는 CRM과 데이터마이닝, 시맨틱웹, 모바일 전자상거래, 경영혁신

과 정보화전략 등이다.

