모체 thyroxine 투여가 새끼 흰쥐 대뇌의 태아 알코올 효과에 미치는 영향

Effect of maternal thyroxine treatment on the offspring's brain development with fetal alcohol effects in the rats

  • 김복 (조선대학교 대학원 의학과) ;
  • 정윤영 (조선대학교 의과대학 해부학교실) ;
  • 박상기 (조선대학교 소아과학교실)
  • Fu, Jin (Department of Medicine, Graduate School, College of Medicine, Chosun University) ;
  • Chung, Yoon Young (Department of Anatomy, College of Medicine, Chosun University) ;
  • Park, Sang Kee (Department of Pediatrics, College of Medicine, Chosun University)
  • 투고 : 2006.01.13
  • 심사 : 2006.02.15
  • 발행 : 2006.06.15

초록

목 적 : 임신 기간 중 지속적으로 알코올을 섭취하는 모체에 thyroxine을 투여하여 알코올의 유해한 영향으로 인한 대뇌의 태아 알코올 효과를 개선시킬 수 있는지를 알아보고자 했다. 방 법 : 실험동물은 매일 35칼로리 정도의 알코올을 섭취한 알코올군, 알코올 대신 dextrin이 첨가된 유동액을 섭취한 정상군, 알코올군과 같은 양의 알코올을 매일 섭취하고 thyroxine을 매일 $5{\mu}g/kg$ 피하 주사한 알코올+$T_4$ 군으로 분류하였다. 임신한 흰쥐 모체가 분만이 끝나면 각 군에서 태어난 새끼들은 그 어미와 분리하여 사료와 물을 자유롭게 섭취하는 대리모에게 키우게 하였다. 한 배의 새끼 1마리씩 총 4마리를 생후 0, 7, 14, 21, 28일에 희생시켜 면역조직화학염색을 시행하여 대뇌겉질 및 해마에서 생후 연령에 따른 NPY 함유 신경세포의 발달과 성숙양상을 관찰하였다. 결 과 : 대뇌겉질에서는 알코올+$T_4$ 군에서 생후 7일에 NPY 함유 신경세포들이 알코올군과 정상군보다 더 뚜렷한 양성반응을 나타내기 시작하였으며, 생후 14일 이후부터는 대뇌겉질의 전 층에 걸쳐 광범위하게 NPY 함유 신경세포들이 관찰되었고 연령 증가에 따른 세포의 감소가 나타나지 않았으나 알코올군은 NPY 함유 신경세포가 생후 28일에 다른 군에 비해 현저히 감소하는 양상을 나타냈다. 해마에서는 알코올+$T_4$ 군에서 생후 7일부터 정상군과 유사한 분포 양상을 나타냈으며 알코올군과는 뚜렷한 차이를 보였다. 특히 생후 14일에 대뇌겉질 및 해마 모두에서 알코올+$T_4$ 군의 NPY 함유 신경세포 분포 및 신경얼기 형성이 두드러졌다. 결 론 : 임신 중 알코올 남용을 하는 모체에 지속적인 $T_4$ 투여는 그 후손들의 뇌에 분포하는 NPY 함유 신경세포의 발달을 정상 군과 유사하게 촉진시킬 수 있을 것으로 생각되며 모체 $T_4$ 투여가 특히 출생 초기의 NPY 합성에 영향을 미쳐 태아 알코올 효과를 개선시킬 수 있을 것으로 생각된다.

Purpose : This study aimed to investigate whether exogenous thyroxine($T_4$) treatment to alcohol-fed dams would ameliorate the detrimental effects of alcohol on the postnatal development of neuropeptide-Y(NPY)-containing neurons of the cerebral cortex and hippocampus of the offspring. Methods : Time-pregnant rats were divided into three groups. An alcohol-fed group A received 35 calories of liquid alcohol diet daily from gestation day 6; control group B was fed a liquid diet in which dextrin replaced alcohol isocalorically; and alcohol+$T_4$ group C received 35 calories of liquid alcohol diet and exogenous thyroxine subcutaneously. The features of the growth and maturation of rat brain tissue were observed at 0, 7, 14, 21 and 28 postnatal days via immunohistochemistry. Results : Group C showed prominent NPY immunoreactivity in the cerebral cortex compared to group A and B at P7. In group C, NPY-containing neurons were widely distributed in the all layers of cerebral cortex after P14. Also, numerical decreases of NPY-containing neuron were not found according to increasing age in group C. A decrease of NPY-containing neurons, however, was clearly observed in group A compared to group C at P28. In the hippocampus, similar patterns appeared in groups B and C after P7. Especially, in groups B and C, NPY-containing fibers formed plexus in the cerebral cortex and hippocampus at P14. Conclusion : These results suggest that the increase of NPY synthesis caused by maternal administration of exogenous thyroxine may convalesce fetal alcohol effects, one of the effects of the dysthyroid state following maternal alcohol abuse.

키워드

참고문헌

  1. Jones KL, Smith DW. Recognition of fetal alcohol syndrome in early infancy. Lancet 1973;2:999-1001
  2. Abel EL, Hannigan JH. Maternal risk factors in fetal alcohol syndrome : provocative and permissive influences. Neurotoxicol Teratol 1995;17:445-62 https://doi.org/10.1016/0892-0362(95)98055-6
  3. Richardson BS, Patrick JE, Bousquet J, Homan J, Brien JF. Cerebral metabolism in fetal lamb after maternal infusion of ethanol. Am J Physiol 1985;249:R505-9
  4. Abel EL. Alcohol-induced changes in blood gases, glucose, and lactate in pregnant and nonpregnant rats. Alcohol 1996; 13:281-5 https://doi.org/10.1016/0741-8329(95)02056-X
  5. Hankin JR. FAS prevention strategies. Alcohol Health Res World 1994;18:62-9
  6. Nathaniel EJ, Nathaniel DR, Mohamed SA, Nahnybida L, Nathaniel L. Growth patterns of rat body, brain and cerebellum in fetal alcohol syndrome. Exp Neurol 1986;93:610-20 https://doi.org/10.1016/0014-4886(86)90180-9
  7. Hannigan JH, Bellisario RL. Lower serum thyroxine levels in rats following prenatal exposure to ethanol. Alcohol Clin Exp Res 1990;14:456-60 https://doi.org/10.1111/j.1530-0277.1990.tb00503.x
  8. Rami A, Patel AJ, Rabie A. Thyroid hormone and development of rat hippocampus : morphological alterations in granule and pyramidal cells. Neuroscience 1986;19:1217-26 https://doi.org/10.1016/0306-4522(86)90135-1
  9. Rami A, Rabie A. Delayed synaptogenesis in the dentate gyrus of the thyroid-deficient developing rat. Dev Neurosci 1990;12:398-405 https://doi.org/10.1159/000111867
  10. Giordano T, Pan JB, Casuto D, Watanabe S, Arneric SP. Thyroid hormone regulation of NGF, NT-3 and BDNF RNA in the adult rat brain. Brain Res Mol Brain Res 1992; 16:239-45 https://doi.org/10.1016/0169-328X(92)90231-Y
  11. Bessho Y, Nakanishi S, Nawa H. Glutamate receptor agonists enhance the expression of BDNF mRNA in cultured cerebellar granule cells. Brain Res Mol Brain Res 1993;18: 201-8 https://doi.org/10.1016/0169-328X(93)90190-Z
  12. Allen JM, McGregor GP, Woodhams PL, Polak JM, Bloom SR. Ontogeny of a novel peptide, neuropeptide Y(NPY) in rat brain. Brain Research 1984;303:197-200 https://doi.org/10.1016/0006-8993(84)90230-0
  13. de Quidt ME, Emson PC. Distribution of neuropeptide Y-like immunoreactivity in the rat central nervous system- II. Immunohistochemical analysis. Neuroscience 1986;18:545-618 https://doi.org/10.1016/0306-4522(86)90057-6
  14. Gray TS, Morley JE. Neuropeptide Y. Anatomical distribution and possible function mammalian nervous system. Life Sci 1986;38:389-401 https://doi.org/10.1016/0024-3205(86)90061-5
  15. Nathaniel EJH, Hassard T, Burton L, Novak C. Effect of exogenous thyroxine on the development of the purkinje cell in fetal alcohol effects in the rat. Exp Mol Pathol 1999; 93:601-9
  16. Rice DP. The economic cost of alcohol abuse and dependence. Alcohol Health Res World 1993;17:10-1
  17. Langlais PJ. Alcohol related thiamine deficiency : Impact on cognitive and memory functioning. Alcohol Health Res World 1995;19:113-21
  18. Clarren SK. Recognition of fetal alcohol syndrome. JAMA 1981;245:2436-9 https://doi.org/10.1001/jama.245.23.2436
  19. Heaton MB, Mitchell JJ, Paiva M, Walker DW. Ethanolinduced alterations in the expression of neurotrophic factors in the developing rat central nervous system. Brain Res Dev Brain Res 2000;121:97-107 https://doi.org/10.1016/S0165-3806(00)00032-8
  20. Mohamed SA, Nathaniel EJ, Nathaniel DR, Snell L. Altered Purkinje cell maturation in rats exposed prenatally to ethanol- I. cytology. Exp Neurol 1987;97:35-52 https://doi.org/10.1016/0014-4886(87)90280-9
  21. Mohamed SA, Nathaniel EJH, Nathaniel DR, Snell L. Altered Purkinje cell maturation in rats exposed prenatally to ethanol-II. synaptology. Exp Neurol 1987b;97:53-69 https://doi.org/10.1016/0014-4886(87)90281-0
  22. Angelucci F, Fiore M, Cozzari C, Aloe L. Prenatal ethanol effects on NGF level, NPY and ChAT immunoreactivity in Mouse entorhinal cortex : A preliminary study. Neurotoxicol Teratol 1999;4:415-25
  23. MacLennan AJ, Lee N, Walker DW. Chronic ethanol administration decreases brain-derived neurotrophic factor gene expression in the rat hippocampus. Neurosci Lett 1995;197:105-8 https://doi.org/10.1016/0304-3940(95)11922-J
  24. Linnarsson S, Bjorklund A, Emfors P. Learning deficit in BDNF mutant mice. Eur J Neurosci 1997;9:2581-7 https://doi.org/10.1111/j.1460-9568.1997.tb01687.x
  25. Minichiello L, Korte M, Wolfer D, Kuhn R, Unsicker K, Cestari V, et al. Essential role for TrkB receptors in hippocampus- mediated learning. Neuron 1999;24:401-14 https://doi.org/10.1016/S0896-6273(00)80853-3
  26. Iritani S, Niizato K, Nawa H, Ikeda K, Emson PC. Immunohistochemical study of brain-derived neurotrophic factor and its receptor, TrkB, in the hippocampal formation of schizophrenic brains. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:801-7 https://doi.org/10.1016/S0278-5846(03)00112-X
  27. Luesse HG, Roskoden T, Linke R, Otten U, Heese K, Schwegler H. Modulation of mRNA expression of the neurotrophins of the nerve growth factor family and their receptors in the septum and hippocampus of rats after transient postnatal thyroxine treatment. I. Expression of nerve growth factor, brain-derived neurotrophic factor, neurotrophin- 3, and neurotrophin-4 mRNA. Exp Brain Res 1998;119:1-8 https://doi.org/10.1007/s002210050313
  28. Roskoden T, Heese K, Otten U, Schwegler H. Modulation of mRNA expression of the neurotrophins of the nerve growth factor family and their receptors in the septum and hippocampus of rats after transient postnatal thyroxine treatment. II. Effects on p75 and trk receptor expression. Exp Brain Res 1999;127:307-13 https://doi.org/10.1007/s002210050800