The SL1 Stem-Loop Structure at the 5′-End of Potato virus X RNA Is Required for Efficient Binding to Host Proteins and forViral Infectivity

  • Kwon, Sun-Jung (School of Agricultural Biotechnology and Center for Plant Molecular Genetics and Breeding Research, Seoul National University) ;
  • Kim, Kook-Hyung (School of Agricultural Biotechnology and Center for Plant Molecular Genetics and Breeding Research, Seoul National University)
  • Received : 2005.08.17
  • Accepted : 2005.11.08
  • Published : 2006.02.28

Abstract

The 5′-region of Potato virus X (PVX) RNA, which contains an AC-rich, single-stranded region and stem-loop structure 1 (SL1), affects RNA replication and assembly. Using Systemic Evolution of Ligands by EXponential enrichment (SELEX) and the electrophoretic mobility shift assay, we demonstrate that SL1 interacts specifically with tobacco protoplast protein extracts (S100). The 36 nucleotides that correspond to the top region of SL1, which comprises stem C, loop C, stem D, and the tetra loop (TL), were randomized and bound to the S100. Remarkably, the wild-type (wt) sequence was selected in the second round, and the number of wt sequences increased as selection proceeded. All of the selected clones from the fifth round contained the wt sequence. Secondary structure predictions (mFOLD) of the recovered sequences revealed relatively stable stem-loop structures that resembled SL1, although the nucleotide sequences therein were different. Moreover, many of the clones selected in the fourth round conserved the TL and C-C mismatch, which suggests the importance of these elements in host protein binding. The SELEX clone that closely resembled the wt SL1 structure with the TL and C-C mismatch was able to replicate and cause systemic symptoms in plants, while most of the other winners replicated poorly only on inoculated leaves. The RNA replication level on protoplasts was also similarly affected. Taken together, these results indicate that the SL1 of PVX interacts with host protein(s) that play important roles related to virus replication.

Keywords

Acknowledgement

Supported by : Ministry of Science and Technology, Ministry of Agriculture and Fisheries

References

  1. Blackwell, J. L. and Brinton, M. A. (1997) Translation elongation factor-1 alpha interacts with the 3′ stem-loop region of West Nile virus genomic RNA. J. Virol. 71, 6433-6444
  2. Blyn, L. B., Towner, J. S., Semler, B. L., and Ehrenfeld, E. (1997) Requirement of poly(rC) binding protein 2 for translation of poliovirus RNA. J. Virol. 71, 6243−6246
  3. Buck, K. W. (1996) Comparison of the replication of positivestranded RNA viruses of plants and animals. Adv. Virus Res. 47, 159−251 https://doi.org/10.1016/S0065-3527(08)60736-8
  4. Cate, J. H., Gooding, A. R., Podell, E., Zhou, K., Golden, B. L., et al. (1996) Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273, 1678−1685 https://doi.org/10.1126/science.273.5282.1678
  5. Chapman, S., Hills, G., Watts, J., and Baulcombe, D. (1992) Mutational analysis of the coat protein gene of potato virus X: effects on virion morphology and viral pathogenicity. Virology 191, 223−230 https://doi.org/10.1016/0042-6822(92)90183-P
  6. Chen, J., Noueiry, A., and Ahlquist, P. (2001) Brome mosaic virus Protein 1a recruits viral RNA2 to RNA replication through a 5′ proximal RNA2 signal. J. Virol. 75, 3207−3219 https://doi.org/10.1128/JVI.75.7.3207-3219.2001
  7. Cho, H. S., Lee, Y. J., Shin, K. S., Jeong, S., Park, J., et al. (2004) In vitro selection of specific RNA aptamers for the NFAT DNA binding domain. Mol. Cells 18, 17−23
  8. Choi, G. S., Kim, J. H., Kim, J. S., and Choi, J. K. (2004) Characterization of cucumber mosaic virus isolated from water chickweed (Stellaria aquatica). Plant Pathol. J. 20, 131−134 https://doi.org/10.5423/PPJ.2004.20.2.131
  9. Diez, J., Ishikawa, M., Kaido, M., and Ahlquist, P. (2000) Identification and characterization of a host protein required for efficient template selection in viral RNA replication. Proc. Natl. Acad. Sci. USA 97, 3913−3918
  10. Ellington, A. D. and Szostak, J. W. (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818−822 https://doi.org/10.1038/346818a0
  11. Gluck, A., Endo, Y., and Wool, I. G. (1992) Ribosomal RNA identity elements for ricin A-chain recognition and catalysis. Analysis with tetraloop mutants. J. Mol. Biol. 226, 411-424 https://doi.org/10.1016/0022-2836(92)90956-K
  12. Guan, H., Song, C., and Simon, A. E. (1997) RNA promoters located on (-)-strands of a subviral RNA associated with turnip crinkle virus. RNA 3, 1401-1412
  13. Guan, H., Carpenter, C. D., and Simon, A. E. (2000) Requirement of 5′-proximal linear sequence on minus strands for plus strand synthesis of a satellite RNA associated with turnip crinkle virus. Virology 268, 355−363 https://doi.org/10.1006/viro.1999.0154
  14. Hellendoorn, K., Verlaan, P. W., and Pleij, C. W. (1997) A functional role for the conserved protonatable hairpins in the 5′ untranslated region of turnip yellow mosaic virus RNA. J. Virol. 71, 8774−8779
  15. Hemenway, C., Weiss, J., O'Connell, K., and Tumer, N. E. (1990) Characterization of infectious transcripts from a potato virus X cDNA clone. Virology 175, 365−371 https://doi.org/10.1016/0042-6822(90)90421-M
  16. Herold, J. and Andino, R. (2000) Poliovirus requires a precise 5′ end for efficient positive-strand RNA synthesis. J. Virol. 74, 6394-6400 https://doi.org/10.1128/JVI.74.14.6394-6400.2000
  17. Heus, H. A. and Pardi, A. (1991) Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. Science 253, 191−194 https://doi.org/10.1126/science.1712983
  18. Houser-Scott, F., Ansel-McKinney, P., Cai, J. M., and Gehrke, L. (1997) In vitro genetic selection analysis of alfalfa mosaic virus coat protein binding to 3′-terminal AUGC repeats in the viral RNAs. J. Virol. 71, 2310-2319
  19. Huang, P. and Lai, M. M. (2001) Heterogeneous nuclear ribonucleoprotein a1 binds to the 3′-untranslated region and mediates potential 5′-3′-end cross talks of mouse hepatitis virus RNA. J. Virol. 75, 5009-5017 https://doi.org/10.1128/JVI.75.11.5009-5017.2001
  20. Jaeger, L., Michel, F., and Westhof, E. (1994) Involvement of a GNRA tetraloop in long-range RNA tertiary interactions. J. Mol. Biol. 236, 1271-1276 https://doi.org/10.1016/0022-2836(94)90055-8
  21. Jucker, F. M. and Pardi, A. (1995) GNRA tetraloops make a Uturn. RNA 1, 219−222
  22. Kim, K. H. and Hemenway, C. (1996) The 5′ nontranslated region of potato virus X RNA affects both genomic and subgenomic RNA synthesis. J. Virol. 70, 5533−5540
  23. Kim, K. H. and Hemenway, C. (1999) Long-distance RNA-RNA interactions and conserved sequence elements affect potato virus X plus-strand RNA accumulation. RNA 5, 636-645 https://doi.org/10.1017/S1355838299982006
  24. Kim, K. H., Kwon, S. J., and Hemenway, C. (2002) Cellular protein binds to sequences near the 5′ terminus of potato virus X RNA that are important for virus replication. Virology 301, 305−312 https://doi.org/10.1006/viro.2002.1559
  25. Kruger, M., Beger, C., Li, Q. X., Welch, P. J., Tritz, R., et al. (2000) Identification of eIF2Bgamma and eIF2gamma as cofactors of hepatitis C virus internal ribosome entry sitemediated translation using a functional genomics approach. Proc. Natl. Acad. Sci. USA 97, 8566−8571
  26. Kusov, Y., Weitz, M., Dollenmeier, G., Gauss-Muller, V., and Siegl, G. (1996) RNA-protein interactions at the 3′ end of the hepatitis A virus RNA. J. Virol. 70, 1890-1897
  27. Kwon, S. J., Park, M. R., Kim, K. W., Plante, C. A., Hemenway, C., et al. (2005) Cis-acting sequences required for coat protein binding and in vitro assembly of Potato virus X. Virology 334, 83−97 https://doi.org/10.1016/j.virol.2005.01.018
  28. Laemmli, U. K. (1970) Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227, 680−685 https://doi.org/10.1038/227680a0
  29. Lahser, F. C., Marsh, L. E., and Hall, T. C. (1993) Contributions of the brome mosaic virus RNA-3 3′-nontranslated region to replication and translation. J. Virol. 67, 3295−3303
  30. Lai, M. M. (1998) Cellular factors in the transcription and replication of viral RNA genomes: a parallel to DNA-dependent RNA transcription. Virology 244, 1−12 https://doi.org/10.1006/viro.1998.9098
  31. Lin, Y. J., Zhang, X., Wu, R. C., and Lai, M. M. (1996) The 3′ untranslated region of coronavirus RNA is required for subgenomic mRNA transcription from a defective interfering RNA. J. Virol. 70, 7236−7240
  32. Livak, K. J. and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the $2^{{\Delta}{\Delta}$Ct}$ method. Methods 25, 402−408 https://doi.org/10.1006/meth.2001.1262
  33. Mathews, D. H., Sabina, J., Zuker, M., and Turner, D. H. (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911−940 https://doi.org/10.1006/jmbi.1999.2700
  34. Miller, E. D., Plante, C. A., Kim, K. H., Brown, J. W., and Hemenway, C. (1998) Stem-loop structure in the 5′ region of potato virus X genome required for plus-strand RNA accumulation. J. Mol. Biol. 284, 591−608 https://doi.org/10.1006/jmbi.1998.2174
  35. Miller, E. D., Kim, K. H., and Hemenway, C. (1999) Restoration of a stem-loop structure required for potato virus X RNA accumulation indicates selection for a mismatch and a GNRA tetraloop. Virology 260, 342−353 https://doi.org/10.1006/viro.1999.9843
  36. Murphy, F. L. and Cech, T. R. (1994) GAAA tetraloop and conserved bulge stabilize tertiary structure of a group I intron domain. J. Mol. Biol. 236, 49−63 https://doi.org/10.1006/jmbi.1994.1117
  37. Noueiry, A. O. and Ahlquist, P. (2003) Brome mosaic virus RNA replication: revealing the role of the host in RNA virus replication. Annu. Rev. Phytopathol. 41, 77−98 https://doi.org/10.1146/annurev.phyto.41.052002.095717
  38. Rocheleau, G., Petrillo, J., Guogas, L., and Gehrke, L. (2004) Degenerate in vitro genetic selection reveals mutations that diminish alfalfa mosaic virus RNA replication without affecting coat protein binding. J. Virol. 78, 8036−8046 https://doi.org/10.1128/JVI.78.15.8036-8046.2004
  39. Santa Cruz, S., Roberts, A. G., Prior, D. A. M., Chapman, S., and Oparka, K. (1998) Cell-to-cell and phloem-mediated transport of potato virus X: The role of virions. Plant Cell 10, 495−510 https://doi.org/10.1105/tpc.10.4.495
  40. Sarkar, G. and Sommer, S. S. (1990) The 'megaprimer' method of site-directed mutagenesis. Biotechniques 8, 404−407
  41. Shi, P. Y., Li, W., and Brinton, M. A. (1996) Cell proteins bind specifically to West Nile virus minus-strand 3′ stem-loop RNA. J. Virol. 70, 6278−6287
  42. Sriskanda, V. S., Pruss, G., Ge, X., and Vance, V. B. (1996) An eight-nucleotide sequence in the potato virus X 3′ untranslated region is required for both host protein binding and viral multiplication. J. Virol. 70, 5266−5271
  43. Strauss, J. H. and Strauss, E. G. (1999) Viral RNA replication. With a little help from the host. Science 283, 802−804 https://doi.org/10.1126/science.283.5403.802
  44. Sun, X. and Simon, A. E. (2003) Fitness of a turnip crinkle virus satellite RNA correlates with a sequence-nonspecific hairpin and flanking sequences that enhance replication and repress the accumulation of virions. J. Virol. 77, 7880−7889 https://doi.org/10.1128/JVI.77.14.7880-7889.2003
  45. Towbin, H., Staehelin, T., and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350−4353
  46. Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505−510 https://doi.org/10.1126/science.2200121
  47. Woese, C. R., Winker, S., and Gutell, R. R. (1990) Architecture of ribosomal RNA: constraints on the sequence of 'tetraloops'. Proc. Natl. Acad. Sci. USA 87, 8467−8471
  48. Zhang, G. and Simon, A. E. (2003) A multifuntional turnip crinkle virus replication enhancer revealed by in vivo functional SELEX. J. Mol. Biol. 326, 35−48 https://doi.org/10.1016/S0022-2836(02)01366-9
  49. Zuker, M. (1989) Computer prediction of RNA structure. Methods Enzymol. 180, 262−288 https://doi.org/10.1016/0076-6879(89)80106-5
  50. Zwieb, C. (1992) Recognition of a tetranucleotide loop of signal recognition particle RNA by protein SRP19. J. Biol. Chem. 267, 15650−15656