CACTA and MITE Transposon Distributions on a Genetic Map of Rice Using F15 RILs Derived from Milyang 23 and Gihobyeo Hybrids

  • Kwon, Soon-Jae (Division of Biotechnology, Kangwon National University) ;
  • Hong, Sung-Won (Division of Biotechnology, Kangwon National University) ;
  • Son, Jae-Han (Division of Biotechnology, Kangwon National University) ;
  • Lee, Ju Kyong (Division of Biotechnology, Kangwon National University) ;
  • Cha, Yong-Soon (Department of Molecular Genetics, National Institute of Agricultural Biotechnology, Rural Development Adminstration) ;
  • Eun, Moo-Young (Department of Molecular Genetics, National Institute of Agricultural Biotechnology, Rural Development Adminstration) ;
  • Kim, Nam-Soo (Division of Biotechnology, Kangwon National University)
  • Received : 2006.01.11
  • Accepted : 2006.04.04
  • Published : 2006.06.30

Abstract

Up to 35% of the rice genome consists of various kinds of transposons, and CACTA and MITE are two of the major class 2 DNA transposons in the genome. We have employed the consensus sequences of Rim2/Hipa CACTA, Stowaway MITE Pangrangja, and Tourist MITE Ditto for transposon display (TD) analysis to locate them on a genetic map, with 58 SSR markers used to anchor them. The TD analysis produced a high profile of the polymorphisms between the parental lines, Oryza sativa var. Gihobyeo/O. sativa var. Milyang, in intraspecific $F_{15}$ RIL lines, locating 368 markers of Rim2/Hipa CACTA, 78 markers of Tourist MITE Ditto, and 22 markers of Stowaway MITE Pangrangja. In the segregation analysis, non-parental segregating bands and segregation distortion bands were observed. The recombinant genetic map spans 3023.9 cM, with 5.7 cM the average distance between markers. The TD markers were distributed unequally on the chromosomes because many TD markers were located in pericentric chromosomal regions except in the cases of chromosomes 2, 3, 6 and 9. Although the number of transposon markers was not sufficient to include all rice class 2 transposons, the current map of CACTA and MITE transposons should provide new insight into the genome organization of rice since no previous DNA transposon map is available.

Keywords

Acknowledgement

Supported by : Crop Functional Genomics Center

References

  1. Brookfield, J. F. Y. (2005) The ecology of the genome-mobile DNA elements and their hosts. Nat. Rev. Genet. 6, 128-136 https://doi.org/10.1038/nrg1524
  2. Bureau, T. E. and Wessler, S. R. (1992) Tourist: a large family of small inverted-repeat transposable elements frequently associated with maize genes. Plant Cell 4, 1283-1294 https://doi.org/10.1105/tpc.4.10.1283
  3. Bureau, T. E. and Wessler. S. R. (1994) Stowaway, a new family of inverted-repeat elements associated with genes in monocotyledonous and dicotyledonous plants. Plant Cell 6, 907-916 https://doi.org/10.1105/tpc.6.6.907
  4. Bureau, T. E., Ronald, P. C., and Wessler, S. R. (1996) A computer-based systematic survey reveals the predominance of small inverted-repeat elements in wild-type rice genes. Proc. Natl. Acad. Sci. USA 93, 8524-8529
  5. Casa, A., Brouwer, C., Nagei, A., Wang, L., Zhang, Q., et al. (2000) The MITE family Heartbreaker (Hbr): Molecualr markers in maize. Proc. Natl. Acad. Sci. USA 97, 10083-10089
  6. Calpe, C. (2004) Rice situation update. Proceeding of the FAO Rice Conference. International Rice Commission Newsletter, Vol. 53, p. 4
  7. Chen, M., Presting, G., Barbazuk, W. B., Goicoechea, J. L., Blackmon, B., et al. (2002) An integrated physical and genetic map of the rice genome. Plant Cell 14, 537-545 https://doi.org/10.1105/tpc.010485
  8. Dellaporta, S. L., Wood, J., and Hicks, J. B. (1983) A simple and rapid method for plant DNA preparation. Version II. Plant Mol. Biol. Rep. 1, 19-21 https://doi.org/10.1007/BF02712670
  9. Flavell, A. J., Pearce, S. R., and Kumar, A. (1995) Plant transposable elements and the genome. Curr. Opin. Genes Dev. 4, 838-844
  10. Harushima, Y., Yano, M., Shomura, A., Sato, M., and Shimano, T. (1998) A high-density rice genetic linkage map with 2275 markers using F2 population. Genetics 148, 479-494
  11. He, Z.-H., Dong, H.-T., Dong, J.-X., Li, D.-B., and Ronald, P. C. (2000) The rice Rim2 transcript accumulates in response to Magnaporthe grisea and its predicted protein product shares similarity with TNP2-like proteins encoded by CACTA transposons. Mol. Gen. Genet. 264, 2-10 https://doi.org/10.1007/s004380000278
  12. Hurst, G. D. D. and Werren, J. H. (2001) The role of selfish genetic elements in eukaryotic evolution. Nat. Rev. Genet. 2, 597-606 https://doi.org/10.1038/35084545
  13. IRGSP (2005) The map-based sequence of the rice genome. Nature 436, 793-800 https://doi.org/10.1038/nature03895
  14. Jiang, N., Bao, Z., Temnyks, S., Cheng, Z., Jiang, J., et al. (2002) Dasheng: A recently amplified nonautonomous long terminal repeat element that is a major component of pericentric regions in rice. Genetics 161, 1293-1305
  15. Juretic, N., Bureau, T. E., and Bruskiewich, R. M. (2004) Transposable element annotation of the rice genome. Bioinformatics 20, 155-160 https://doi.org/10.1093/bioinformatics/bth019
  16. Khush, G. S. (2004) Harnessing science and technology for sustainable rice-based production system. Rice situation update. Proceeding of the FAO Rice Conference, International Rice Commission Newsletter, Vol. 53, pp. 17-23
  17. Kosambi, D. (1944) The estimation of map distances from recombination values. Ann. Eugen. 12, 172-175
  18. Kumar, A. and Bennetzen, J. L. (1999) Plant retroposons. Ann. Rev. Genet. 33, 479-532 https://doi.org/10.1146/annurev.genet.33.1.479
  19. Kunze, R. and Weil, C. F. (2003) The hAT and CACTA superfamilies of plant transposons; in Mobile DNA II, Craig, N. L., Cragies, R., Gellert, M., and Lambowitz, A. M. (eds.), pp. 565-612, ASM Press
  20. Kwon, S.-J., Park, K.-C., Kim, J.-H., Lee, J. K., and Kim, N.-S. (2005) Rim2/Hipa CACTA transposon display; a new genetic marker technique in Oryza species. BMC Genet. 6, 15 https://doi.org/10.1186/1471-2156-6-15
  21. Lee, J.-K., Park, J.-Y., Kim, J.-H., Kwon, S.-J., Shin, J.-H., et al. (2006) Genetic mapping of the Issac-CACTA transposon in maize. Theor. Appl. Genet. DOI:10.1007/s00122-006-0263-9
  22. Lincoln, S., Daly, M., and Lander, E. S. (1992) Construction genetic maps with MAPMAKER/EXP 3.0. Whitehead Institute Technical Report. 3rd ed., Cambridge, MA
  23. McCouch, S. R., Kochert, G., Yu, Z. H., Wang, Z. Y., Khush, G. S., et al. (1988) Molecular mapping of rice chromosomes. Theor. Appl. Genet. 76, 815-829 https://doi.org/10.1007/BF00273666
  24. McCouch, S. R., Teytelman, L., Xu, Y., Lobos, K. B., Clare, K., et al. (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res. 9, 199-207 https://doi.org/10.1093/dnares/9.6.199
  25. Nagaki, K., Neumann, P., Zhang, D., Ouyang, S., Buell, C. R., et al. (2005) Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice. Mol. Biol. Evol. 22, 845-855 https://doi.org/10.1093/molbev/msi069
  26. Panaud, O., Vitte, C., Hivert, J., Muzlak, S., Talg, J., et al. (2002) Characterization of transposable elements in the genome of rice (Oryza sativa L.) using representational difference analysis (RDA). Mol. Genet. Genomics 268, 113-121 https://doi.org/10.1007/s00438-002-0734-x
  27. Park, K. C., Kim, N. H., Cho, Y. S., Kang, K. H., Lee, J. K., et al. (2003) Genetic variation in AA genome Oryza species measured by MITE-AFLP. Theor. Appl. Genet. 107, 203-209 https://doi.org/10.1007/s00122-003-1252-x
  28. Park, K. C., Lee, J. K., Kwon, S.-J., Shin, J.-H., Lee, J.-H., et al. (2004) Distribution of MITE transposons in a rice genetic map. Kor. J. Breed. 36, 95-102
  29. Paterson, A. H., Freelng, M., and Sasaki, T. (2005) Grains of knowledge: genomics of model species. Genome Res. 15, 1643-1650 https://doi.org/10.1101/gr.3725905
  30. Singh, K., Ishii, T., Parco, A., Huang, N., Brar, D. S., et al. (1996) Centromere mapping and orientation of the molecular linkage map of rice (Oryza sativa L.). Proc. Natl. Acad. Sci. USA 93, 6163-6168
  31. Wang, S., Liu, N., Peng, K., and Zhang, Q. (1999) The distribution and copy number of copia-like retrotransposons in rice (Oryza sativa L.) and their implications in the organization and evolution of rice genome. Proc. Natl. Acad. Sci. USA 96, 6824-6828
  32. Wang, G.-D., Tian, P.-F., Cheng, Z.-K., Wu, G., Jiang J.-M., et al. (2003) Genomic characterization of Rim2/Hipa elements reveals a CACTA-like transposon superfamily with unique features in the rice genome. Mol. Genet. Genomics 270, 234-242 https://doi.org/10.1007/s00438-003-0918-z
  33. Wessler, S. R., Nagel, A., and Casa, A. (2001) Miniature inverted- repeat transposable elements help to create diversity in maize and rice; in Rice Genetics IV, Khush, G. S., Brar, D. S., and Hardy, B. (eds.), pp. 107-116, Proc. 4th Int. Rice Genetics Symposium, 22-27 October 2000, IRRI, Los Banos, The Phillipines
  34. Wicker, T., Guyot, R., Yahiaouri, N., and Keller, B. (2003) CACTA transposons in Triticeae. A diverse family of highcopy number repetitive elements. Plant Physiol. 132, 52-63 https://doi.org/10.1104/pp.102.015743
  35. Wu, J., Maehara, T., Shimokawa, T., Yamamoto, S., Harada, C., et al. (2002) A comprehensive rice transcript map containing 6591 expressed sequence tag sites. Plant Cell 14, 525-535 https://doi.org/10.1105/tpc.010274
  36. Yu, J., Wang, J., Lin, W., Li, S., Li H., et al. (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol. 3, 266-281 https://doi.org/10.1371/journal.pbio.0030266